- Открытие нейтрона и протона

Презентация "Открытие нейтрона и протона" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16

Презентацию на тему "Открытие нейтрона и протона" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 16 слайд(ов).

Слайды презентации

Открытие нейтрона и протона. Автор: Фомичева С.Е., учитель физики МБОУ «Средняя школа №27» города Кирова
Слайд 1

Открытие нейтрона и протона

Автор: Фомичева С.Е., учитель физики МБОУ «Средняя школа №27» города Кирова

Открытие протона. После создания ядерной модели атома вопрос о составе атомного ядра стал одним из основных в ядерной физике. Из чего состоит атомное ядро? Одна из основных характеристик атомного ядра — его электрический заряд. Точные измерения электрического заряда атомных ядер были выполнены в 191
Слайд 2

Открытие протона

После создания ядерной модели атома вопрос о составе атомного ядра стал одним из основных в ядерной физике. Из чего состоит атомное ядро?

Одна из основных характеристик атомного ядра — его электрический заряд. Точные измерения электрического заряда атомных ядер были выполнены в 1913 году Г. Мозли.

Генри Гвин Джефрис Мозли

Электрический заряд ядра атома q равен произведению элементарного электрического заряда е на порядковый номер Z химического элемента в таблице Д.И. Менделеева: q = Z·e.

Первую частицу, входящую в состав атомных ядер, открыл в 1919 г. Э. Резерфорд, исследуя взаимодействие α-частиц с ядрами атомов азота. Эрнест Резерфорд. К- источник альфа-частиц; Э- прозрачный экран, покрытый сульфидом цинка; Внутри сосуда – газообразный азот. Источник отодвигали на расстояние, при
Слайд 3

Первую частицу, входящую в состав атомных ядер, открыл в 1919 г. Э. Резерфорд, исследуя взаимодействие α-частиц с ядрами атомов азота.

Эрнест Резерфорд

К- источник альфа-частиц; Э- прозрачный экран, покрытый сульфидом цинка; Внутри сосуда – газообразный азот. Источник отодвигали на расстояние, при котором альфа-частицы не долетали до экрана; Но на экране фиксировались вспышки.

Вывод: α-частицы из ядер азота выбивали какие-то другие заряженные частицы. Исследования действия электрических и магнитных полей на частицы, выбиваемые из ядер азота, показали, что эти частицы обладают положительным элементарным зарядом и масса их равна массе ядра водорода. Эти частицы — назвали пр
Слайд 4

Вывод:

α-частицы из ядер азота выбивали какие-то другие заряженные частицы.

Исследования действия электрических и магнитных полей на частицы, выбиваемые из ядер азота, показали, что эти частицы обладают положительным элементарным зарядом и масса их равна массе ядра водорода.

Эти частицы — назвали протонами. Обозначим протон 1 Н 1 или 1 р 1 тогда данную реакцию можно записать так: ?? ? ? + ? ?? ? → ?? ? ? + ? Н ?

q=+1e, m=1а.е.м ? р ?

Продолжая опыты с бором, фтором, натрием и рядом других элементов, Э Резерфорд обнаружил, что α-частица выбивает и из этих ядер протоны. Вывод: ядра атомов всех элементов содержат протоны. Противоречие: допустим, что ядро ? ?? ? состоит только из протонов, тогда N ? =4, но ? ? =1 а.е.м., значит ? ??
Слайд 5

Продолжая опыты с бором, фтором, натрием и рядом других элементов, Э Резерфорд обнаружил, что α-частица выбивает и из этих ядер протоны.

Вывод: ядра атомов всех элементов содержат протоны.

Противоречие: допустим, что ядро ? ?? ? состоит только из протонов, тогда N ? =4, но ? ? =1 а.е.м., значит ? ?? =4 а.е.м, но она равна 9 а.е.м.

Вывод: в состав ядра входит еще одна частица, не имеющая заряда.

В 1930 г. немецкие ученые В. Боте и Г. Беккер обнаружили, что при облучении бериллия α-частицами, возникает излучение неизвестной природы, способное проходить через толстые слои свинца с меньшим ослаблением, чем даже рентгеновское или γ-излучение. Боте и Беккер решили, что они получили очень жесткие
Слайд 6

В 1930 г. немецкие ученые В. Боте и Г. Беккер обнаружили, что при облучении бериллия α-частицами, возникает излучение неизвестной природы, способное проходить через толстые слои свинца с меньшим ослаблением, чем даже рентгеновское или γ-излучение. Боте и Беккер решили, что они получили очень жесткие γ-лучи.

Доказательство существования нейтрона.

В 1932 г. французские ученые Ф. и И. Жолио-Кюри выяснили, что эти лучи почти не ионизуют воздух, через который проходят. Но если на их пути поместить парафин, то ионизирующая способность лучей резко возрастает. Они предположили, что это излучение выбивает из парафиновой пластины протоны.

В том же 1932 году, английский физик Д. Чедвик (сотрудник Э. Резерфорда) выдвинул предположение, согласно которому при облучении бериллия α-частицами излучается поток нейтральных частиц с массой, примерно равной массе протона. Название нейтрон произошло от лат. neutron — ни тот, ни другой, т.е. не и
Слайд 7

В том же 1932 году, английский физик Д. Чедвик (сотрудник Э. Резерфорда) выдвинул предположение, согласно которому при облучении бериллия α-частицами излучается поток нейтральных частиц с массой, примерно равной массе протона.

Название нейтрон произошло от лат. neutron — ни тот, ни другой, т.е. не имеющий ни положительного, ни отрицательного заряда.

Джеймс Чедвик

Опыты Чедвика явились экспериментальным доказательством существования нейтронов.

? ? ? q=0, m=1а.е.м

Строение атомного ядра. Советский физик Д.Д.Иваненко и В.Гейзенберг предложили протонно-нейтронную модель ядра. Согласно этой модели ядро атома любого вещества состоит из протонов и нейтронов. Протон и нейтрон – два зарядовых состояния ядерной частицы, называемой нуклоном. Число протонов в ядре равн
Слайд 8

Строение атомного ядра

Советский физик Д.Д.Иваненко и В.Гейзенберг предложили протонно-нейтронную модель ядра

Согласно этой модели ядро атома любого вещества состоит из протонов и нейтронов.

Протон и нейтрон – два зарядовых состояния ядерной частицы, называемой нуклоном.

Число протонов в ядре равняется числу электронов в атоме;

Изотопы. Изучения атомных ядер показали, что большинство химических элементов представляют собой смесь атомов с одинаковым зарядовым числом, но с различными массами. Все они обладают одинаковыми химическими свойствами. Атомы с одинаковыми зарядами ядра, но с различными массами назвали изотопами элем
Слайд 9

Изотопы

Изучения атомных ядер показали, что большинство химических элементов представляют собой смесь атомов с одинаковым зарядовым числом, но с различными массами. Все они обладают одинаковыми химическими свойствами.

Атомы с одинаковыми зарядами ядра, но с различными массами назвали изотопами элемента. Название изотоп произошло от греч. isos — одинаковый, topos — место, т.е. это химические вещества, занимающие одно и то же место в таблице Д.И. Менделеева.

Ядра изотопов отличаются числом нейтронов. Например, водород имеет три изотопа: протий ? Н ? — ядро состоит из одного протона, дейтерий ? Н ? — ядро состоит из одного протона и одного нейтрона, тритий ? Н ? — ядро состоит из одного протона и двух нейтронов. Уран ?? ? имеет 12 изотопов с массовыми чи
Слайд 10

Ядра изотопов отличаются числом нейтронов. Например, водород имеет три изотопа: протий ? Н ? — ядро состоит из одного протона, дейтерий ? Н ? — ядро состоит из одного протона и одного нейтрона, тритий ? Н ? — ядро состоит из одного протона и двух нейтронов. Уран ?? ? имеет 12 изотопов с массовыми числами от 228 до 239.

Атомные массы химических элементов в таблице Менделеева выражены дробными числами из-за того, что они имеют изотопы. Например: в среднем на 100 атомов хлора приходится 75 атомов с массой 35 а.е.м. и 25 атомов с массой 37 а.е.м, поэтому средняя масса: ? ср = ??а.е.м∙??+??а.е.м∙?? ??? =35,5а.е.м
Слайд 11

Атомные массы химических элементов в таблице Менделеева выражены дробными числами из-за того, что они имеют изотопы.

Например: в среднем на 100 атомов хлора приходится 75 атомов с массой 35 а.е.м. и 25 атомов с массой 37 а.е.м, поэтому средняя масса:

? ср = ??а.е.м∙??+??а.е.м∙?? ??? =35,5а.е.м

Применение изотопов. Как способ контроля износа поршневых колец в двигателях внутреннего сгорания. Радиоактивные изотопы позволяют судить о диффузии металлов и процессах в доменных печах. Мощное гамма-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических о
Слайд 12

Применение изотопов

Как способ контроля износа поршневых колец в двигателях внутреннего сгорания. Радиоактивные изотопы позволяют судить о диффузии металлов и процессах в доменных печах. Мощное гамма-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них дефектов.

В промышленности:

Одним из наиболее выдающихся исследований явилось исследование обмена веществ в организмах. Радиоактивные изотопы применяются в медицине как для постановки диагноза, так и для терапевтических целей. Радиоактивный натрий, вводимый в небольших количествах в кровь, используется для исследования кровооб
Слайд 13

Одним из наиболее выдающихся исследований явилось исследование обмена веществ в организмах. Радиоактивные изотопы применяются в медицине как для постановки диагноза, так и для терапевтических целей. Радиоактивный натрий, вводимый в небольших количествах в кровь, используется для исследования кровообращения, йод интенсивно отлагается в щитовидной железе, особенно при базедовой болезни. Интенсивное гамма-излучение кобальта используется при лечении раковых заболеваний (кобальтовая пушка).

В медицине:

Облучение семян растений приводит к заметному увеличению урожайности. Вызывают мутации у растений и микроорганизмов, что приводит к появлению мутантов с новыми ценными свойствами. Получены микроорганизмы, применяемые в производстве антибиотиков. Для борьбы с вредными насекомыми и для консервации пищ
Слайд 14

Облучение семян растений приводит к заметному увеличению урожайности. Вызывают мутации у растений и микроорганизмов, что приводит к появлению мутантов с новыми ценными свойствами. Получены микроорганизмы, применяемые в производстве антибиотиков. Для борьбы с вредными насекомыми и для консервации пищевых продуктов. Для выясния, какое из фосфорных удобрений лучше усваивается растением.

В сельском хозяйстве:

В археологии: Для определения возраста древних предметов органического происхождения.
Слайд 15

В археологии:

Для определения возраста древних предметов органического происхождения.

Метод «меченых атомов»: Основан на том, что химические свойства радиоактивных изотопов не отличаются от свойств нерадиоактивных изотопов тех же элементов.
Слайд 16

Метод «меченых атомов»:

Основан на том, что химические свойства радиоактивных изотопов не отличаются от свойств нерадиоактивных изотопов тех же элементов.

Список похожих презентаций

Открытие нейтрона. Строение атомного ядра

Открытие нейтрона. Строение атомного ядра

Открытие нейтрона. Ирен Жолио-Кюри (1897-1956). Фредерик Жолио-Кюри (1900-1958). При бомбардировке бериллия α-частицами обнаруживалось какое-то сильно ...
Открытие нейтрона

Открытие нейтрона

В 1932 году произошло важнейшее для всей ядерной физики событие: учеником Резерфорда английским физиком Д. Чедвиком был открыт нейтрон. В январе 1932 ...
Открытие радиоактивности

Открытие радиоактивности

РАДИОАКТИВНОСТЬ – превращение атомных ядер в другие ядра, сопровождающееся испусканием различных частиц и электромагнитного излучения. Отсюда и название ...
Открытие радиоактивности

Открытие радиоактивности

Радиоактивное излучение. Радиоактивность появились на земле со времени ее образования , и человек за всю историю развития своей цивилизации находился ...
Открытие электромагнитной индукции (1831г., М.Фарадей)

Открытие электромагнитной индукции (1831г., М.Фарадей)

Электромагнитная индукция. Опыты Фарадея. . Правило Ленца. Возникновение ЭДС индукции в проводнике. . Закон электромагнитной индукции. ...
Открытие закона всемирного тяготения

Открытие закона всемирного тяготения

Цель урока. изучить закон всемирного тяготения, показать его практическую значимость; шире раскрыть понятие взаимодействия тел на примере этого закона ...
Открытие

Открытие

Проект «Открытие»:. открытие интересного учебного предмета открытие учащимися себя своих способностей умения учиться стремления быть готовым жить ...
Тепловые двигатели физика

Тепловые двигатели физика

СОДЕРЖАНИЕ. Содержание Тепловой двигатель Тепловые машины и развитие техники Кто создал тепловые двигатели Виды тепловых двигателей Принцип работы ...
«Механические волны» физика

«Механические волны» физика

Цель исследования: установить с научной точки зрения, что такое звук. Задачи исследования: 1.    Изучить физическую теорию звука. 2.    Исследовать историю ...
Рентгеновские лучи физика

Рентгеновские лучи физика

Презентацию подготовила: Григорьвева Наталья. Руководитель: Баева Валентина Михайловна. Цель работы: узнать о жизни и изобретении великого ученого ...
Сила трения физика

Сила трения физика

Определение. Сила трения - это сила, возникающая в плоскости касания тел при их относительном перемещении. Направление. Сила трения направлена противоположно ...
Оптика и атомная физика

Оптика и атомная физика

В основу настоящего конспекта лекций положен курс лекций по оптике, разработанный профессором кафедры оптики Н.К. Сидоровым и заведующим кафедры оптики ...
Простая и интересная физика у Вас дома

Простая и интересная физика у Вас дома

Содержание. Эксперименты на тепловые явления. Эксперимент на плотность. Научные забавы и прочие опыты. Как будут отпадать гвозди??? Вы ответили неверно!!! ...
Атомная физика

Атомная физика

Факты, свидетельствующие о сложном строении атома. Периодическая система Д.И. Менделеева Электролиз Открытие электрона Катодные лучи Радиоактивность. ...
Музыка и физика

Музыка и физика

Урок подготовили:. Учащиеся 9Б класса и Алевтина Антоновна Петриченко – учитель физики первой категории МОУ «СОШ № 30» г.Чебоксары. Надежда Николаевна ...
«Сообщающиеся сосуды» физика

«Сообщающиеся сосуды» физика

Цель: изучить особенности сообщающихся сосудов и сформулировать основной закон сообщающихся сосудов. Опыт с двумя трубками. Опыт с сосудами разной ...
«Электромагнит» физика

«Электромагнит» физика

2. Как располагаются железные опилки в магнитном поле прямого тока? 3. Что называют магнитной линией магнитного поля? 4. Для чего вводят понятие магнитной ...
«Световые волны» физика

«Световые волны» физика

Оглавление:. Принцип Гюйгенса Закон отражения света Закон преломления света Полное отражение Линза Расчёт увеличения линзы Дисперсия света Интерференция ...
«Оптические приборы» физика

«Оптические приборы» физика

Содержание. 1.Телескоп 2.Строение телескопа 3.Разновидности телескопов 4.Рефлекторы 5.Использование телескопов 6.Микроскоп 7.Создание микроскопа 8.Использование ...
«МКТ» физика

«МКТ» физика

Содержание. Молекулярная физика Основы молекулярно-кинетической теории строения вещества (МКТ) Температура и внутренняя энергия тела Характеристика ...

Конспекты

Открытие нейтрона. Состав атомного ядра. Массовое число. Изотопы

Открытие нейтрона. Состав атомного ядра. Массовое число. Изотопы

Нуриманов Д.Р., МКОУ СОШ №2. . Проект открытого урока. . «Открытие нейтрона. Состав атомного ядра. Массовое число. Изотопы». Цель:. Формирование ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:5 августа 2018
Категория:Физика
Содержит:16 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации