Презентация "Клистрон" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12

Презентацию на тему "Клистрон" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 12 слайд(ов).

Слайды презентации

Клистрон ЭМ-31 Аксенов О.
Слайд 1

Клистрон ЭМ-31 Аксенов О.

Определение. Клистрон — электровакуумный прибор, в котором преобразование постоянного потока электронов в переменный происходит путём модуляции скоростей электронов электрическим полем СВЧ (при пролёте их сквозь зазор объёмного резонатора) и последующей группировки электронов в сгустки (из-за разнос
Слайд 2

Определение

Клистрон — электровакуумный прибор, в котором преобразование постоянного потока электронов в переменный происходит путём модуляции скоростей электронов электрическим полем СВЧ (при пролёте их сквозь зазор объёмного резонатора) и последующей группировки электронов в сгустки (из-за разности их скоростей) в пространстве дрейфа, свободном от СВЧ поля.

Классификация. Пролётные Отражательные
Слайд 3

Классификация

Пролётные Отражательные

Пролётный клистрон. Двухрезонаторный клистрон. 1 — электронная пушка; 2— ускоряющая сетка; 3 — группирующие сетки; 4 — улавливающие сетки; 5 — 1-й полый резонатор; 6 — 2-й полый резонатор; 7— виток связи; 8 — коаксиальный кабель для обратной связи; 9 — анод; 10 — радиатор для охлаждения анода
Слайд 4

Пролётный клистрон

Двухрезонаторный клистрон

1 — электронная пушка; 2— ускоряющая сетка; 3 — группирующие сетки; 4 — улавливающие сетки; 5 — 1-й полый резонатор; 6 — 2-й полый резонатор; 7— виток связи; 8 — коаксиальный кабель для обратной связи; 9 — анод; 10 — радиатор для охлаждения анода

Принцип работы. Если между сетками входного резонатора приложить напряжение высокой частоты, то скорость пролетающих через них электронов будет модулирована. В результате в пространстве дрейфа произойдет группирование и группированный электронный пучок вызовет на выходном резонаторе напряжение высок
Слайд 5

Принцип работы

Если между сетками входного резонатора приложить напряжение высокой частоты, то скорость пролетающих через них электронов будет модулирована. В результате в пространстве дрейфа произойдет группирование и группированный электронный пучок вызовет на выходном резонаторе напряжение высокой частоты, а пролетевшие через сетки электроны уйдут в анод. В таком виде клистрон может служить усилителем напряжения или мощности. Если же устроить наружную связь между резонаторами, как показано на рисунке, то клистрон будет генерировать. Для этого оба резонатора должны быть настроены достаточно близко к резонансу, связь должна быть правильно подобрана и анодное напряжение должно быть точно установлено, так как оно определяет скорость электронов, а от их скорости зависит фаза.

Многорезонаторный клистрон. В многорезонаторных клистронах между входным и выходным резонаторами помещают дополнительные ненагруженные резонаторы. В качестве примера, поясняющего особенности их работы, достаточно рассмотреть пролётный трёхрезонаторный клистрон. Предположим, что промежуточный резонат
Слайд 6

Многорезонаторный клистрон

В многорезонаторных клистронах между входным и выходным резонаторами помещают дополнительные ненагруженные резонаторы. В качестве примера, поясняющего особенности их работы, достаточно рассмотреть пролётный трёхрезонаторный клистрон. Предположим, что промежуточный резонатор точно настроен на частоту входного сигнала. Как и в двухрезонаторном клистроне, во входном резонаторе электроны модулируются по скорости и далее группируются в первом пространстве дрейфа. Если на вход поступает слабый входной сигнал, то и модуляция электронного потока будет незначительной. При этом величина наведенного тока во втором резонаторе также будет малой.

Однако, поскольку ненагруженный промежуточный резонатор является высокодобротной системой, то даже при малой амплитуде конвекционного тока напряжение, создаваемое на его сетках, будет большим. Суммарная активная проводимость второго резонатора определяется только потерями в самом резонаторе и электр
Слайд 7

Однако, поскольку ненагруженный промежуточный резонатор является высокодобротной системой, то даже при малой амплитуде конвекционного тока напряжение, создаваемое на его сетках, будет большим. Суммарная активная проводимость второго резонатора определяется только потерями в самом резонаторе и электронной нагрузкой затвора. В установившемся режиме ток и напряжение во втором резонаторе имеют ту же частоту, что и частота входного сигнала. Напряжение, наведенное на втором резонаторе, вызывает сильную модуляцию скорости электронов и сильную группировку электронного потока во втором пространстве дрейфа. В результате распределение электронов в сгустках их плотности будет определяться вторым резонатором и зависимость конвекционного тока в третьем резонаторе будет примерно такой же, как в двухрезонаторном клистроне, образованном вторым и третьим резонаторами, но при модулирующем напряжении гораздо большем, чем модулирующее напряжение первого резонатора. При этом коэффициент усиления значительно увеличится, так как группирование электронов осуществляется при значительно меньшей амплитуде входного сигнала, подводимого к первому резонатору.

Отражательный клистрон
Слайд 8

Отражательный клистрон

Принцип работы отражательного клистрона. Отражательные клистроны предназначены для генерирования СВЧ колебаний малой мощности. Отражательный клистрон имеет один резонатор, дважды пронизываемый электронным потоком. Возвращение электронов осуществляется с помощью отражателя, находящегося под отрицател
Слайд 9

Принцип работы отражательного клистрона

Отражательные клистроны предназначены для генерирования СВЧ колебаний малой мощности. Отражательный клистрон имеет один резонатор, дважды пронизываемый электронным потоком. Возвращение электронов осуществляется с помощью отражателя, находящегося под отрицательным постоянным потенциалом по отношению к катоду. Таким образом, резонатор играет роль группирователя при первом прохождении электронов и роль выходного контура при втором прохождении. Промежуток между резонатором и отражателем играет роль пространства дрейфа, где модуляция электронного потока по скорости переходит в модуляцию по плотности.

Применение. Пролётные клистроны являются основой всех мощных СВЧ передатчиков когерентных радиосистем, где реализуется стабильность и спектральная чистота высокостабильных водородных стандартов частоты. В частности, в выходных каскадах самых мощных в мире радиолокаторов для исследования астероидов и
Слайд 10

Применение

Пролётные клистроны являются основой всех мощных СВЧ передатчиков когерентных радиосистем, где реализуется стабильность и спектральная чистота высокостабильных водородных стандартов частоты. В частности, в выходных каскадах самых мощных в мире радиолокаторов для исследования астероидов и комет (радиолокационные телескопы, планетные и астероидные радары), которые расположены в обсерваториях Аресибо (Пуэрто Рико), Голдстоуне (Калифорния) и Евпатории (Крым), используются именно пролетные клистроны с водяным охлаждением. Отражательные клистроны применяются в различной аппаратуре в качестве маломощных генераторов. Вследствие низкого КПД их не используют для получения больших мощностей и применяют в качестве гетеродинов СВЧ приемников, в измерительной аппаратуре и в маломощных передатчиках. Их основные преимущества заключаются в конструктивной простоте и наличии электронной перестройки частоты. Отражательные клистроны имеют высокую надежность и не требуют применения фокусирующей системы.

Список литературы. Журнал Радио, 3 номер, 1946 год//Я.И.Эфрусси Wikipedia.ru Фёдоров Н.Д. Электронные приборы СВЧ и квантовые приборы: Учебник для вузов. - М. :Атомиздат, 1979. - 288 с.
Слайд 11

Список литературы

Журнал Радио, 3 номер, 1946 год//Я.И.Эфрусси Wikipedia.ru Фёдоров Н.Д. Электронные приборы СВЧ и квантовые приборы: Учебник для вузов. - М. :Атомиздат, 1979. - 288 с.

Изучайте электронику!
Слайд 12

Изучайте электронику!

Список похожих презентаций

Свободное падение физика

Свободное падение физика

Свободное падение тел впервые исследовал Галилей, который установил, что свободно падающие тела движутся равноускоренно с одинаковым для всех тел ...
Строение атома Квантовая физика

Строение атома Квантовая физика

строение атома 11 квантовая физика ФИЗИКА КЛАСС. Данный урок проводится по типу телевизионной передачи…. Квантовая физика. Строения атома. ВЫХОД. ...
Презентации и физика

Презентации и физика

Актуальность. «Главная задача современной школы - это раскрытие способностей каждого ученика, воспитание личности, готовой к жизни в высокотехнологичном, ...
Радиосвязь физика

Радиосвязь физика

Вопросы. Что такое и колебательный контур? Для чего он предназначен Какие превращения энергии происходят в колебательном контуре? Чем отличается открытый ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Содержание:. Структура и содержание МКТ. Основные положения МКТ. Опытные обоснования МКТ. Роль диффузии и броуновского движения в природе и технике. ...
Науки и физика

Науки и физика

ИНТЕГРАЦИЯ — (лат. Integratio- восстановление-восполнение) процесс сближения и связи наук, состояние связанности отдельных частей в одно целое, а ...
Атомная физика

Атомная физика

Факты, свидетельствующие о сложном строении атома. Периодическая система Д.И. Менделеева Электролиз Открытие электрона Катодные лучи Радиоактивность. ...
Молекулярная физика

Молекулярная физика

Цель: повторение основных понятий, законов и формул МОЛЕКУЛЯРНОЙ ФИЗИКИ в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ ...
«Сообщающиеся сосуды» физика

«Сообщающиеся сосуды» физика

Цель: изучить особенности сообщающихся сосудов и сформулировать основной закон сообщающихся сосудов. Опыт с двумя трубками. Опыт с сосудами разной ...
«Электромагнит» физика

«Электромагнит» физика

2. Как располагаются железные опилки в магнитном поле прямого тока? 3. Что называют магнитной линией магнитного поля? 4. Для чего вводят понятие магнитной ...
«Световые волны» физика

«Световые волны» физика

Оглавление:. Принцип Гюйгенса Закон отражения света Закон преломления света Полное отражение Линза Расчёт увеличения линзы Дисперсия света Интерференция ...
«Оптические приборы» физика

«Оптические приборы» физика

Содержание. 1.Телескоп 2.Строение телескопа 3.Разновидности телескопов 4.Рефлекторы 5.Использование телескопов 6.Микроскоп 7.Создание микроскопа 8.Использование ...
«МКТ» физика

«МКТ» физика

Содержание. Молекулярная физика Основы молекулярно-кинетической теории строения вещества (МКТ) Температура и внутренняя энергия тела Характеристика ...
«Механические волны» физика

«Механические волны» физика

Цель исследования: установить с научной точки зрения, что такое звук. Задачи исследования: 1.    Изучить физическую теорию звука. 2.    Исследовать историю ...
Атомная физика

Атомная физика

План урока 1. Из истории физики 2. Модель Томсона 3. Опыт Резерфорда 4. Противоречия 5.Постулаты Бора 6.Энергетическая диаграмма атома водорода 7. ...
Лампы накаливания физика

Лампы накаливания физика

Актуальность. 2 июля 2009 года Президент России Дмитрий Медведев, выступая на заседании президума Госсовета по вопросам повышения энергоэффективности ...
Атомная физика

Атомная физика

Атомная физика. Атомная физика на стыке XIX и ХХ вв. в науке свершились открытия, заставившие заколебаться сложившуюся картину мира. Представлениям, ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Литература: 1. Кудрявцев Б.Б., Курс физики: Теплота и молекулярная физика. – М.: Учпедгиз, 1960. 210 с. 2. Савельев И.В. Курс общей физики Т. 1, Механика, ...
Атомная физика

Атомная физика

СТРОЕНИЕ АТОМА Модель Томсона. Модель Резерфорда. Опыт Резерфорда. Определение размеров. атомного ядра Планетарная модель атома. Планетарная модель ...
Музыка и физика

Музыка и физика

Урок подготовили:. Учащиеся 9Б класса и Алевтина Антоновна Петриченко – учитель физики первой категории МОУ «СОШ № 30» г.Чебоксары. Надежда Николаевна ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:3 марта 2019
Категория:Физика
Содержит:12 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации