- Изображение в зеркале

Презентация "Изображение в зеркале" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14

Презентацию на тему "Изображение в зеркале" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 14 слайд(ов).

Слайды презентации

Плоское и сферическое зеркала
Слайд 1

Плоское и сферическое зеркала

Плоское зеркало. С плоским зеркалом мы сталкиваемся очень часто - когда причесываемся или бреемся, когда управляем автомобилем. Чистое оконное стекло или поверхность пруда тоже вполне могут служить плоскими зеркалами. Рассмотрим изображения, получающиеся при этом.
Слайд 2

Плоское зеркало.

С плоским зеркалом мы сталкиваемся очень часто - когда причесываемся или бреемся, когда управляем автомобилем. Чистое оконное стекло или поверхность пруда тоже вполне могут служить плоскими зеркалами. Рассмотрим изображения, получающиеся при этом.

В наше время вогнутые зеркала чаще используются для освещения. В карманном электрическом фонарике стоит крошечная лампочка всего в несколько свечей. Если бы она посылала свои лучи во все стороны, то от такого фонарика было бы мало пользы: его свет не проникал бы дальше одного-двух метров. Но за ламп
Слайд 3

В наше время вогнутые зеркала чаще используются для освещения. В карманном электрическом фонарике стоит крошечная лампочка всего в несколько свечей. Если бы она посылала свои лучи во все стороны, то от такого фонарика было бы мало пользы: его свет не проникал бы дальше одного-двух метров. Но за лампочкой поставлено маленькое вогнутое зеркальце. Поэтому луч света от карманного фонаря прорезывает темноту на десять метров вперед. Однако, в фонаре имеется еще и маленькая линза — перед лампочкой. Зеркальце и линза помогают друг другу создавать направленный луч света.

Так же устроены и автомобильные фары и прожекторы, рефлектор синей медицинской лампы, корабельный фонарь на верхушке мачты и фонарь маяка. В прожекторе светит мощная дуговая лампа. Но если бы вынули из прожектора вогнутое зеркало, то свет лампы бесцельно разошелся бы во все стороны, она светила бы н
Слайд 4

Так же устроены и автомобильные фары и прожекторы, рефлектор синей медицинской лампы, корабельный фонарь на верхушке мачты и фонарь маяка. В прожекторе светит мощная дуговая лампа. Но если бы вынули из прожектора вогнутое зеркало, то свет лампы бесцельно разошелся бы во все стороны, она светила бы не на семьдесят километров, а всего на один-два...

Особенно сложно устроен фонарь маяка. В древности самым мощным маяком был Александрийский маяк - последнее из чудес света, связанное с именем Александра Македонского. Согласно легенде, на Александрийском маяке находилось огромное зеркало, при помощи которого можно было видеть корабли, отплывавшие из
Слайд 5

Особенно сложно устроен фонарь маяка. В древности самым мощным маяком был Александрийский маяк - последнее из чудес света, связанное с именем Александра Македонского. Согласно легенде, на Александрийском маяке находилось огромное зеркало, при помощи которого можно было видеть корабли, отплывавшие из Греции. Маяк находился в городе Александрия, основанном в 332 году до н.э. в дельте Нила. На подходе к городу на острове Фарос было решено построить маяк. Маяк получился в виде трехэтажной башни высотой 120 метров. На башне находилось множество остроумных технических приспособлений: флюгера, астрономические приборы, часы. На третьем этаже, в круглой, обнесенной колоннами ротонде, горел вечно громадный костер. Но и большой костер дает не так уж много света. К тому же свет его расходился бы во все стороны и должен был бы быстро терять свою силу. Можно предположить, что огонь костра отражался с помощью большого вогнутого металлического зеркала с линзой. Вогнутое зеркало отбрасывало все лучи в одном направлении, и благодаря этому свет маяка значительно усиливался. Дрова для костра доставлялись наверх по спиральной лестнице, такой пологой и широкой, что по ней на стометровую высоту въезжали повозки, запряженные ослами. С падением римской империи он перестал светить, обвалилась верхняя башня, а стены нижнего этажа разрушились после землетрясения в 14 веке. Руины древнего маяка были встроены в турецкую крепость и в ней существуют поныне.

Английский ученый Исаак Ньютон использовал вогнутое зеркало в телескопе. И в современных телескопах также используются вогнутые зеркала.
Слайд 6

Английский ученый Исаак Ньютон использовал вогнутое зеркало в телескопе. И в современных телескопах также используются вогнутые зеркала.

А вот вогнутые антенны радиотелескопов очень большого диаметра состоят из множества отдельных металлических зеркал. Например, антенна телескопа РАТАН-600 состоит из 895 отдельных зеркал, расположенных по окружности. Конструкция этого телескопа позволяет одновременно наблюдать несколько участков неба
Слайд 7

А вот вогнутые антенны радиотелескопов очень большого диаметра состоят из множества отдельных металлических зеркал. Например, антенна телескопа РАТАН-600 состоит из 895 отдельных зеркал, расположенных по окружности. Конструкция этого телескопа позволяет одновременно наблюдать несколько участков неба

Неровная поверхность рассеивает свет, т. к. отражающие участки ориентированы в пространстве беспорядочно. Благодаря этому рассеянный шероховатой поверхностью свет можно видеть отовсюду (экран кинотеатров). Такое отражение света называется рассеянным (диффузным).
Слайд 8

Неровная поверхность рассеивает свет, т. к. отражающие участки ориентированы в пространстве беспорядочно. Благодаря этому рассеянный шероховатой поверхностью свет можно видеть отовсюду (экран кинотеатров). Такое отражение света называется рассеянным (диффузным).

Пусть пучок света от источника S падает на зеркало. Рассмотрим лучи SA и SB. После отражения от зеркала они кажутся нам исходящими из точки S'. То есть источник S нам кажется расположенным за зеркалом! Заметим также, что расстояния SO и S'O равны, а отрезок SS' перпендикулярен зеркалу.
Слайд 9

Пусть пучок света от источника S падает на зеркало. Рассмотрим лучи SA и SB. После отражения от зеркала они кажутся нам исходящими из точки S'. То есть источник S нам кажется расположенным за зеркалом! Заметим также, что расстояния SO и S'O равны, а отрезок SS' перпендикулярен зеркалу.

Итак, теоретическим путем мы выяснили, что изображения предметов в зеркале являются мнимыми (так как кажутся расположенными там, куда световые лучи на самом деле не проникают). Изображения находятся позади зеркала на таком же расстоянии от него, как и сами предметы. Кроме того, отрезок, соединяющий
Слайд 10

Итак, теоретическим путем мы выяснили, что изображения предметов в зеркале являются мнимыми (так как кажутся расположенными там, куда световые лучи на самом деле не проникают). Изображения находятся позади зеркала на таком же расстоянии от него, как и сами предметы. Кроме того, отрезок, соединяющий предмет и его изображение, перпендикулярен поверхности зеркала.

Проверим теперь эти выводы экспериментально. Положим на стол линейку, а поверх нее вертикально поставим стекло. Оно будет служить полупрозрачным зеркалом. Поместив перед ним свечу, мы увидим ее отражение. Оно будет казаться расположенным позади стекла. Однако, заглянув туда, мы никакого изображения
Слайд 11

Проверим теперь эти выводы экспериментально. Положим на стол линейку, а поверх нее вертикально поставим стекло. Оно будет служить полупрозрачным зеркалом. Поместив перед ним свечу, мы увидим ее отражение. Оно будет казаться расположенным позади стекла. Однако, заглянув туда, мы никакого изображения не увидим. Следовательно, мы убедились, что изображение является мнимым

Чтобы убедиться в правильности второго вывода, измерим по линейке расстояния от стекла до свечи и от стекла до изображения. Они окажутся равны. Подтвердить третий вывод тоже несложно: угольник с прямым углом нужно приложить к линейке.

Направим пучок параллельных лучей на выпуклое зеркало (левый рисунок). После отражения лучи станут расходящимися. Поэтому выпуклое зеркало иначе называют рассеивающим зеркалом. Направим теперь параллельные лучи на вогнутое зеркало (правый рисунок). Сразу же после отражения лучи станут сходящимися. П
Слайд 12

Направим пучок параллельных лучей на выпуклое зеркало (левый рисунок). После отражения лучи станут расходящимися. Поэтому выпуклое зеркало иначе называют рассеивающим зеркалом. Направим теперь параллельные лучи на вогнутое зеркало (правый рисунок). Сразу же после отражения лучи станут сходящимися. Поэтому вогнутые зеркала иначе называют собирающими зеркалами.

Точка F – действительный фокус собирающего зеркала. Точка F ' – фокус рассеивающего зеркала. Он уже является мнимым, так как световые лучи через него не проходят.

Изображения предметов в выпуклом зеркале всегда уменьшенные. Например, на левом рисунке отчетливо видно, что размеры изображений чашек значительно меньше размеров самих чашек. При помощи вогнутого зеркала легко получить увеличенные изображения предметов. Взгляните на правый рисунок. Размеры всех изо
Слайд 13

Изображения предметов в выпуклом зеркале всегда уменьшенные. Например, на левом рисунке отчетливо видно, что размеры изображений чашек значительно меньше размеров самих чашек. При помощи вогнутого зеркала легко получить увеличенные изображения предметов. Взгляните на правый рисунок. Размеры всех изображений больше размеров самих предметов. На среднем рисунке изображено обычное плоское зеркало.

Подготовил : Прасол Евгений. конец
Слайд 14

Подготовил : Прасол Евгений

конец

Список похожих презентаций

Изображение в плоском зеркале

Изображение в плоском зеркале

Содержание. Цели. Задачи. Основной материал: закон отражения света, плоское зеркало. Оформление доски: рисунки («отражение от зеркала» расположить ...
Ход лучей и построение изображения в сферическом вогнутом зеркале

Ход лучей и построение изображения в сферическом вогнутом зеркале

Цель работы. Выяснить ход лучей и построить изображения предмета в сферическом вогнутом зеркале. Определения. Сферическое зеркало называется вогнутым, ...
Сила трения физика

Сила трения физика

Определение. Сила трения - это сила, возникающая в плоскости касания тел при их относительном перемещении. Направление. Сила трения направлена противоположно ...
Тепловые двигатели физика

Тепловые двигатели физика

СОДЕРЖАНИЕ. Содержание Тепловой двигатель Тепловые машины и развитие техники Кто создал тепловые двигатели Виды тепловых двигателей Принцип работы ...
Простая и интересная физика у Вас дома

Простая и интересная физика у Вас дома

Содержание. Эксперименты на тепловые явления. Эксперимент на плотность. Научные забавы и прочие опыты. Как будут отпадать гвозди??? Вы ответили неверно!!! ...
Рентгеновские лучи физика

Рентгеновские лучи физика

Презентацию подготовила: Григорьвева Наталья. Руководитель: Баева Валентина Михайловна. Цель работы: узнать о жизни и изобретении великого ученого ...
Музыка и физика

Музыка и физика

Урок подготовили:. Учащиеся 9Б класса и Алевтина Антоновна Петриченко – учитель физики первой категории МОУ «СОШ № 30» г.Чебоксары. Надежда Николаевна ...
Оптика и атомная физика

Оптика и атомная физика

В основу настоящего конспекта лекций положен курс лекций по оптике, разработанный профессором кафедры оптики Н.К. Сидоровым и заведующим кафедры оптики ...
Атомная физика

Атомная физика

Факты, свидетельствующие о сложном строении атома. Периодическая система Д.И. Менделеева Электролиз Открытие электрона Катодные лучи Радиоактивность. ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Литература: 1. Кудрявцев Б.Б., Курс физики: Теплота и молекулярная физика. – М.: Учпедгиз, 1960. 210 с. 2. Савельев И.В. Курс общей физики Т. 1, Механика, ...
«Сообщающиеся сосуды» физика

«Сообщающиеся сосуды» физика

Цель: изучить особенности сообщающихся сосудов и сформулировать основной закон сообщающихся сосудов. Опыт с двумя трубками. Опыт с сосудами разной ...
«Электромагнит» физика

«Электромагнит» физика

2. Как располагаются железные опилки в магнитном поле прямого тока? 3. Что называют магнитной линией магнитного поля? 4. Для чего вводят понятие магнитной ...
«Световые волны» физика

«Световые волны» физика

Оглавление:. Принцип Гюйгенса Закон отражения света Закон преломления света Полное отражение Линза Расчёт увеличения линзы Дисперсия света Интерференция ...
«Оптические приборы» физика

«Оптические приборы» физика

Содержание. 1.Телескоп 2.Строение телескопа 3.Разновидности телескопов 4.Рефлекторы 5.Использование телескопов 6.Микроскоп 7.Создание микроскопа 8.Использование ...
«МКТ» физика

«МКТ» физика

Содержание. Молекулярная физика Основы молекулярно-кинетической теории строения вещества (МКТ) Температура и внутренняя энергия тела Характеристика ...
«Механические волны» физика

«Механические волны» физика

Цель исследования: установить с научной точки зрения, что такое звук. Задачи исследования: 1.    Изучить физическую теорию звука. 2.    Исследовать историю ...
Атомная физика

Атомная физика

План урока 1. Из истории физики 2. Модель Томсона 3. Опыт Резерфорда 4. Противоречия 5.Постулаты Бора 6.Энергетическая диаграмма атома водорода 7. ...
Молекулярная физика

Молекулярная физика

Цель: повторение основных понятий, законов и формул МОЛЕКУЛЯРНОЙ ФИЗИКИ в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ ...
Атомная физика

Атомная физика

Атомная физика. Атомная физика на стыке XIX и ХХ вв. в науке свершились открытия, заставившие заколебаться сложившуюся картину мира. Представлениям, ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Содержание:. Структура и содержание МКТ. Основные положения МКТ. Опытные обоснования МКТ. Роль диффузии и броуновского движения в природе и технике. ...

Конспекты

Тема урока физики в 6 классе: Плоское зеркало. Построение изображения в зеркале

Тема урока физики в 6 классе: Плоское зеркало. Построение изображения в зеркале

Тема урока физики в 6 классе:. . Плоское зеркало. Построение изображения в зеркале. Цели и задачи урока. Цель урока:.  формирование умения ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.