- Равносильность уравнений

Презентация "Равносильность уравнений" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17

Презентацию на тему "Равносильность уравнений" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 17 слайд(ов).

Слайды презентации

Равносильность уравнений. Выполнила: Цыденова Б. Проверила: Щербакова И. И.
Слайд 1

Равносильность уравнений

Выполнила: Цыденова Б. Проверила: Щербакова И. И.

Определение: Два уравнения называются равносильными, если их множества решений равны
Слайд 2

Определение:

Два уравнения называются равносильными, если их множества решений равны

Теорема 1: Пусть уравнение f(x) = g(x)задано на множестве X и h(x) – выражение, определенное на том же множестве. Тогда уравнение равносильны на множестве Х.
Слайд 3

Теорема 1:

Пусть уравнение f(x) = g(x)задано на множестве X и h(x) – выражение, определенное на том же множестве. Тогда уравнение равносильны на множестве Х.

Доказательство: Обозначим через Т1 множество решений уравнения (1), а через Т2 множество решений уравнения (2). Тогда уравнения (1) и (2) будут равносильны, если Т1 = Т2. Но чтобы убедиться в этом, необходимо показать, что любой корень из Т1 является корнем уравнения (2) и, наоборот, любой корень из
Слайд 4

Доказательство:

Обозначим через Т1 множество решений уравнения (1), а через Т2 множество решений уравнения (2). Тогда уравнения (1) и (2) будут равносильны, если Т1 = Т2. Но чтобы убедиться в этом, необходимо показать, что любой корень из Т1 является корнем уравнения (2) и, наоборот, любой корень из Т2 является корнем уравнения (1).

Т2

Пусть число а – корень уравнения (1). Тогда а Є Т1 и при подстановке в уравнение (1) обращает его в истинное числовое равенство f(a) = g(a), а выражение h(x) обращает в числовое выражение h(a). Поставим к обеим частям истинное равенства f(a) = g(a) числовое выражение h(a). Получим согласно свойства
Слайд 5

Пусть число а – корень уравнения (1). Тогда а Є Т1 и при подстановке в уравнение (1) обращает его в истинное числовое равенство f(a) = g(a), а выражение h(x) обращает в числовое выражение h(a). Поставим к обеим частям истинное равенства f(a) = g(a) числовое выражение h(a). Получим согласно свойства истинных числовых равенств истинное числовое равенство f(a) + h(a) = g(a) + h(a)

Итак, доказано, что каждый корень уравнения (1) является корнем уравнения (2), т.е. Т1СТ2. Пусть, теперь b – корень уравнения (2). Тогда b ЄT2 и при подстановке в уравнение обращает его в истинное числовое равенство f(b) + h(b) = g(b) + h(b). Прибавим к обеим частям этого равенства числовое выражени
Слайд 6

Итак, доказано, что каждый корень уравнения (1) является корнем уравнения (2), т.е. Т1СТ2. Пусть, теперь b – корень уравнения (2). Тогда b ЄT2 и при подстановке в уравнение обращает его в истинное числовое равенство f(b) + h(b) = g(b) + h(b). Прибавим к обеим частям этого равенства числовое выражение – h(b). Получим истинное числовое равенство f(b) = g(b), которое говорит о том, что число b – корень уравнения (1).

Итак, доказано, что каждый корень уравнения (2) является и корнем уравнения (1), т.е. Т2 С Т1. Так как Т1С Т2 и Т2 С Т1, то по определению равных множеств Т1С Т2 , а значит, уравнения (1) и (2) равносильны на множестве Х. При решении уравнений чаще всего используется не сама данная теорема, а следст
Слайд 7

Итак, доказано, что каждый корень уравнения (2) является и корнем уравнения (1), т.е. Т2 С Т1. Так как Т1С Т2 и Т2 С Т1, то по определению равных множеств Т1С Т2 , а значит, уравнения (1) и (2) равносильны на множестве Х. При решении уравнений чаще всего используется не сама данная теорема, а следствия из нее: 1. Если к обеим частям уравнения прибавить одно и то же число, то получим уравнение, равносильное данному. 2. Если какое- либо слагаемое (числовое выражение или выражение с переменной) перенести из одной части уравнения в другую, поменяв знак слагаемого на противоположный, то получим уравнение, равносильное данному.

Теорема 2: Пусть уравнение f(x) = g(x) на множестве X и h (x) – выражение, определенное на том же множестве и не обращающееся в нуль ни при каких значениях х из множества Х. Тогда уравнения f(x) = g(x) и f(x) * h(x) = g(x) * h(x) равносильны на множестве Х.
Слайд 8

Теорема 2:

Пусть уравнение f(x) = g(x) на множестве X и h (x) – выражение, определенное на том же множестве и не обращающееся в нуль ни при каких значениях х из множества Х. Тогда уравнения f(x) = g(x) и f(x) * h(x) = g(x) * h(x) равносильны на множестве Х.

Доказательство этой теоремы аналогично доказательству теоремы 1. Из теоремы 2 вытекает следствие, которое часто воспользуется при решении уравнений. Если обе части уравнений умножить (или разделить) на одно и то же число, отличное от нуля, то получим уравнение, равносильное исходному. Решим уравнени
Слайд 9

Доказательство этой теоремы аналогично доказательству теоремы 1. Из теоремы 2 вытекает следствие, которое часто воспользуется при решении уравнений. Если обе части уравнений умножить (или разделить) на одно и то же число, отличное от нуля, то получим уравнение, равносильное исходному. Решим уравнение 1-х/3 = х/6, хЄR, и выясним, какие теоретические положения при этом были использованы.

Возьмем теперь уравнение х(х - 1) = 2х, хЄR. Иногда учащиеся решают его так: делят обе части на х, получают уравнение х – 1 = 2, откуда находят, что х = 3, и заключают: {3} – множество решений данного уравнения. Но верно ли решено данное уравнение? Найдены ли все такие действительные значения х, кот
Слайд 13

Возьмем теперь уравнение х(х - 1) = 2х, хЄR. Иногда учащиеся решают его так: делят обе части на х, получают уравнение х – 1 = 2, откуда находят, что х = 3, и заключают: {3} – множество решений данного уравнения. Но верно ли решено данное уравнение? Найдены ли все такие действительные значения х, которые обращают уравнение х(х – 1) = 2 в истинное числовое равенство? Нетрудно видеть, что при х = 0 данное уравнение обращается в истинное числовое равенство 0*( 0 – 1) = 2*0. Значит, 0 – корень данного уравнения. Почему же произошла потеря этого корня? Дело в том, что уравнение х – 1 = 2 не равносильно уравнению 2( х – 1) = 2х на множестве действительных чисел, так как получено из последнего умножением на выражение 1/х, которое определено не для всех действительных чисел (в частности, при х = 0 оно не имеет смысла), т.е. нами не выполнено условие теоремы 2, что и привело к потере корня. Как правильно решить уравнение х(х - 1) = 2х? Рассмотрим один из возможных вариантов решения.

Таким образом, множество решений данного уравнения состоит из двух чисел 0 и 3, т.е. имеет вид {0, 3}. Заметим, что невыполнение условий теорем 1 и 2 может привести не только к потере корней уравнения, но ик появлению так называемых посторонних корней. Какие корни считают посторонними? Пусть даны ур
Слайд 16

Таким образом, множество решений данного уравнения состоит из двух чисел 0 и 3, т.е. имеет вид {0, 3}. Заметим, что невыполнение условий теорем 1 и 2 может привести не только к потере корней уравнения, но ик появлению так называемых посторонних корней. Какие корни считают посторонними? Пусть даны уравнения: f1(x) = g1(x) и f2(x) = g2(x) (2). Если известно, что все корни уравнения (1) являются корнями уравнения (2), то про уравнение (2) можно сказать, что оно следует из уравнения (1) или что уравнение (2) есть следствие уравнения (1). Если же уравнение (2)имеет корни, не удовлетворяющие уравнению (1), то они будут посторонними для уравнения (1). Например, решая уравнение 5х – 15/(х + 2)(х - 3) = 0, мы освобождаемся от знаменателя, умножив обе части уравнения на (х + 2)(х - 3), и получаем 5х – 15 = 0, откуда х = 3. Но при х = 3 знаменатель дроби 5х – 15/(х + 2)(х - 3) обращается в нуль, и поэтому х = 3 не может быть корнем исходного уравнения, т.е. х = 3 оказывается для него посторонним корнем.

Вообще если при решении уравнения его заменяют следствием, (а не равносильным уравнением), то надо найти все корни уравнения-следствия, а затем их проверить, подставив в исходное уравнение. Посторонние корни отбрасывают. Следует заметить, что приобретение посторонних корней менее «опасное» явление,
Слайд 17

Вообще если при решении уравнения его заменяют следствием, (а не равносильным уравнением), то надо найти все корни уравнения-следствия, а затем их проверить, подставив в исходное уравнение. Посторонние корни отбрасывают. Следует заметить, что приобретение посторонних корней менее «опасное» явление, чем их потеря. Поэтому при решении уравнений необходимо в первую очередь строго следить за правильным применением теорем о равносильности.

Список похожих презентаций

Решение показательных уравнений

Решение показательных уравнений

1 3 4. ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ. Уравнения вида af(x)=ag(x),где a - положительное число , отличное от 1,и уравнения , сводящиеся к этому виду , называются ...
Решение линейных уравнений, содержащих неизвестное под знаком модуля

Решение линейных уравнений, содержащих неизвестное под знаком модуля

ЦЕЛЬ РАБОТЫ. Рассмотреть примеры уравнений, содержащих неизвестное под знаком модуля с точки зрения геометрического смысла модуля и алгебраического ...
Решение неполных квадратных уравнений

Решение неполных квадратных уравнений

ПРОБЛЕМА. Решение неполных квадратных уравнений нерациональным способом. Изучив данную тему в 8 классе, учащиеся в старших классах забывают и порой ...
Решение уравнений высших степеней

Решение уравнений высших степеней

РАЗМИНКА (проверка д/з). Что записано на доске? Что называется уравнением? Что значит решить уравнение? Что называется корнем уравнения? Какие виды ...
Решение квадратных уравнений различными способами

Решение квадратных уравнений различными способами

Герберт Спенсер, английский философ, когда-то сказал: “Дороги не те знания, которые откладываются в мозгу, как жир, дороги те, которые превращаются ...
Решение тригонометрических уравнений

Решение тригонометрических уравнений

"Мы ограничены, но мы можем расширить свои границы". Стивен Кови. Цель урока:. Наработка собственного опыта в умении определять тип уравнения и сопоставлять ...
Решение уравнений

Решение уравнений

Раскройте скобки:. Упростите выражение:. Какое равенство называют уравнением? Уравнением называют равенство, содержащее букву, значение которой надо ...
Виды показательных уравнений

Виды показательных уравнений

Показательным уравнением называется уравнение, в котором неизвестное (x) входит только в показатели степени при некоторых постоянных основаниях. Для ...
Виды показательных уравнений и способы их решения

Виды показательных уравнений и способы их решения

Умные мысли. Мне приходится делить время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее. Политика существует для данного ...
В мире квадратных уравнений

В мире квадратных уравнений

Оглавление. Введение Заметки прошлого Основные понятия Теорема Виета Способы решения квадратного уравнения. Математика — основа точных наук. На первый ...
Виды квадратных уравнений

Виды квадратных уравнений

гипотеза. Каждый человек, особенно если он ученик 8 класса, может решить квадратное уравнение, если знает ответы на вопросы…. вопросы... Определение ...
Аналитический и численный методы решения систем уравнений с параметром

Аналитический и численный методы решения систем уравнений с параметром

АНАЛИТИЧЕСКИЙ И ЧИСЛЕННЫЙ МЕТОДЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ С ПАРАМЕТРОМ. Астрахарчик Н.А. Система симметрична относительно знака x. Система симметрична ...
Аналитические методы решения логарифмических уравнений

Аналитические методы решения логарифмических уравнений

Цели урока:. Обобщить и систематизировать изученные методы решения логарифмических уравнений Выявить особенности каждого метода Выяснить, всегда ли ...
Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Ознакомить учителей математики с возможностями продукта MathCAD Обеспечить автоматизацию работы учителей с использованием MathCAD Рассмотреть решение ...
Решение рациональных уравнений

Решение рациональных уравнений

Теоретический тест: Действия с алгебраическими дробями. 2. Основное свойство алгебраической дроби:. а) И числитель, и знаменатель дроби можно умножить ...
Галактика формул и уравнений

Галактика формул и уравнений

« Галактика формул и уравнений». Цели урока:. закрепить буквенную запись формул сокращенного умножении и их словесные формулировок закрепить и усовершенствовать ...
Решение систем рациональных уравнений графическим способом

Решение систем рациональных уравнений графическим способом

Устная работа:. Каким уравнением задаётся данный график? А. (х+2)2+(у-2)2=4 Б. (х-2)2+у2=4 В. (х-2)2+у2=16 Г. (х-2)2+у2=2. А. у=-х2+2 Б. у=х2 +2 В. ...
Графический метод решения систем уравнений с двумя переменными

Графический метод решения систем уравнений с двумя переменными

Обобщить графический способ решения систем уравнений; Сформировать умения графи-чески решать системы уравне-ний второй степени, привлекая известные ...
Решение тригонометрических уравнений методом оценки

Решение тригонометрических уравнений методом оценки

Не все тригонометрические уравнения можно решить известными нам методами (методами разложения на множители, методами замены переменной или подстановки, ...
Графический способ решения квадратных уравнений

Графический способ решения квадратных уравнений

Графический способ решения уравнений. Решить графически уравнение. Ответ: х=-3 или х=1. Самостоятельная работа. 1. Постройте график функции и укажите ...

Конспекты

Решение квадратных уравнений

Решение квадратных уравнений

. План-конспект урока по математике в 8 классе малокомплектной школы. . Тема урока. : Решение квадратных уравнений. Место урока в учебном ...
Решение квадратных уравнений

Решение квадратных уравнений

Урок для 8 класса по теме «Решение квадратных уравнений». . Цели урока:. образовательные. : обобщение и систематизация основных знаний и умений ...
Решение задач с помощью уравнений

Решение задач с помощью уравнений

Отдел образования администрации Тальменского района Алтайского края. МКОУ «Новоозёрская СОШ». План урока математики в 5 классе по теме:. ...
Решение задач составлением системы уравнений

Решение задач составлением системы уравнений

Муниципальное общеобразовательное учреждение общеобразовательная школа №53. пос. Октябрьский Люберецкий район Московская область. . . ...
Решение показательных уравнений

Решение показательных уравнений

Государственное бюджетное образовательное учреждение. Центр образования №170 Санкт-Петербурга. План-конспект двух уроков по алгебре и ...
Решение рациональных уравнений

Решение рациональных уравнений

9 класс. Тема. : Решение рациональных уравнений. Цель. :. . 1. Обобщить, углубить знания учащихся по решению рациональных уравнений. 2. Способствовать ...
Графический способ решения система уравнений с двумя переменными

Графический способ решения система уравнений с двумя переменными

Урок алгебры в10 классе по теме: «Графический способ решения система уравнений с двумя переменными». Цель урока:. добиться усвоения учащимися смысла ...
Решение логарифмических уравнений

Решение логарифмических уравнений

Государственное бюджетное образовательное учреждение. . среднего профессионального образования. Пермский политехнический колледж имени Н.Г.Славянова. ...
Графический способ решения систем уравнений

Графический способ решения систем уравнений

. . . . . . Урок алгебры по теме. «Графический способ решения систем. уравнений». Автор: Гаврилова Ирина Николаевна. Учитель математики ...
Графический способ решения систем уравнений

Графический способ решения систем уравнений

Тема урока:. . Графический способ решения систем уравнений. Тип урока. : Урок изучения нового материала. Цели урока. :. Образовательные. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:9 ноября 2018
Категория:Математика
Содержит:17 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации