- Четыре замечательные точки треугольника

Презентация "Четыре замечательные точки треугольника" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11

Презентацию на тему "Четыре замечательные точки треугольника" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 11 слайд(ов).

Слайды презентации

Четыре замечательные точки треугольника. презентация по геометрии
Слайд 1

Четыре замечательные точки треугольника

презентация по геометрии

Из истории
Слайд 2

Из истории

ИЗ ИСТОРИИ ЗАМЕЧАТЕЛЬНЫХ ТОЧЕК ТРЕУГОЛЬНИКА В четвертой книге "Начал" Евклид решает задачу: "Вписать круг в данный треугольник". Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанного круга. Из решения другой задачи Е
Слайд 3

ИЗ ИСТОРИИ ЗАМЕЧАТЕЛЬНЫХ ТОЧЕК ТРЕУГОЛЬНИКА В четвертой книге "Начал" Евклид решает задачу: "Вписать круг в данный треугольник". Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанного круга. Из решения другой задачи Евклида вытекает, что перпендикуляры, восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке – центре описанного круга. В "Началах" не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово "ортос" означает "прямой", "правильный"). Это предложение было, однако, известно Архимеду, Паппу, Проклу. Четвертой особенной точкой треугольника является точка пересечения медиан. Архимед доказал, что она является центром тяжести (барицентром) треугольника. На вышеназванные четыре точки было обращено особое внимание, и начиная с XVIII века они были названы "замечательными" или "особенными" точками треугольника. Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – "геометрии треугольника" или "новой геометрии треугольника", одним из родоначальников которой стал Леонард Эйлер. В 1765 году Эйлер доказал, что в любом треугольнике ортоцентр, барицентр и центр описанной окружности лежат на одной прямой, названной позже "прямой Эйлера". В двадцатых годах XIX века французские математики Ж. Понселе, Ш. Брианшон и другие установили независимо друг от друга следующую теорему: основания медиан, основания высот и середины отрезков высот, соединяющих ортоцентр с вершинами треугольника, лежат на одной и той же окружности. Эта окружность называется "окружностью девяти точек", или "окружностью Фейербаха", или "окружностью Эйлера". К. Фейербах установил, что центр этой окружности лежит на прямой Эйлера. Большой вклад в развитие геометрии треугольника внесли математики XIX – XX веков Лемуан, Брокар, Тебо и другие.

План урока. Теорема о медианах треугольника Свойство биссектрисы угла Свойство серединного перпендикуляра к отрезку Теорема о биссектрисах треугольника Теорема о серединных перпендикулярах к сторонам треугольника Теорема о высотах треугольника Контрольные вопросы
Слайд 4

План урока

Теорема о медианах треугольника Свойство биссектрисы угла Свойство серединного перпендикуляра к отрезку Теорема о биссектрисах треугольника Теорема о серединных перпендикулярах к сторонам треугольника Теорема о высотах треугольника Контрольные вопросы

Теорема о медианах треугольника. Th Медианы тр-ка пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины. Дано: ΔABC; AA1, BB1, CC1-медианы. Доказать: AA1∩ BB1∩CC1=O, AO:A1O=BO:B1O=CO:C1O=2:1. Доказательство: ∠ 1= ∠ 2, ∠3= ∠ 4→ Δ ABO ~ ΔA1B1O. AB:A1B1=2→AO:A1O=BO
Слайд 5

Теорема о медианах треугольника

Th Медианы тр-ка пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины. Дано: ΔABC; AA1, BB1, CC1-медианы. Доказать: AA1∩ BB1∩CC1=O, AO:A1O=BO:B1O=CO:C1O=2:1. Доказательство: ∠ 1= ∠ 2, ∠3= ∠ 4→ Δ ABO ~ ΔA1B1O. AB:A1B1=2→AO:A1O=BO:B1O=2:1. Пусть BB1∩CC1=O1, тогда: ∠ 5=∠ 6, ∠7=∠ 8→ Δ CBO1 ~ ΔC1B1O1. CB:C1B1=2→CO1:C1O1=CO1:C1O1=2:1. Из всего этого следует, что O совпадает с O1, а значит AA1∩ BB1∩CC1=O, AO:A1O=BO:B1O=CO:C1O=2:1. Ч.т.д.

Свойство биссектрисы углы. Th Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон. Дано: ∠BAC; AM – биссектриса (∠1=∠2); KM-перпендикуляр к AB; ML-перпендикуляр к AC. Доказать: KM=KL. Доказательство: AM – общая гипотенуза, ∠1=∠2 → ΔAKM=Δ ALM по гипотенузе и острому углу → KM=KL.
Слайд 6

Свойство биссектрисы углы

Th Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон. Дано: ∠BAC; AM – биссектриса (∠1=∠2); KM-перпендикуляр к AB; ML-перпендикуляр к AC. Доказать: KM=KL. Доказательство: AM – общая гипотенуза, ∠1=∠2 → ΔAKM=Δ ALM по гипотенузе и острому углу → KM=KL. Ч.т.д. Th Каждая точка, лежащая внутри неразвернутого угла и равноудаленная от его сторон, лежит на биссектрисе этого угла. Дано: ∠BAC; KM-перпендикуляр к AB; ML-перпендикуляр к AC; KM=KL. Доказать: AM – биссектриса ∠BAC. Доказательство: AM – общая гипотенуза, KM=KL → ΔAKM=Δ ALM по гипотенузе и катету → ∠1=∠2, то есть AM – биссектриса ∠BAC . Ч.т.д.

A B C K L M 1 2

Свойство серединного перпендикуляра к отрезку. O Серединный перпендикуляр-прямая, проходящая через середину отрезка и перпендикулярная к нему. Th Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Дано:O-середина AB, m–серединный перпендикуляр к AB, M принадлежит
Слайд 7

Свойство серединного перпендикуляра к отрезку

O Серединный перпендикуляр-прямая, проходящая через середину отрезка и перпендикулярная к нему. Th Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Дано:O-середина AB, m–серединный перпендикуляр к AB, M принадлежит m. Доказать: AM=MB. Доказательство: 1)Если M совпадает с O, то AM=MB=AO=BO. Ч.т.д. 2)AO=OB – катеты, MO – общий катет→ ΔAMO=ΔBMO-по двум катетам→AM=MB. Ч.т.д. Th Каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему. Дано:O-середина AB, m–серединный перпендикуляр к AB, AM=MB. Доказать: M принадлежит m. Доказательство: 1)Если M лежит на AB, то AM=MB=AO=BO, и M принадлежит m. Ч.т.д. 2)AM=MB→ ΔAMB-равнобедренный→MO-медиана и высота ΔAMB→MO совпадает с m, и M принадлежит m. Ч.т.д.

Теорема о биссектрисах треугольника. Th Биссектрисы треугольника пересекаются в одной точке. Дано: ΔABC, AA1, BB1, CC1 – биссектрисы ΔABC. Доказать: AA1 ∩ BB1 ∩ CC1 = O. Доказательство: Пусть AA1 ∩ BB1 = O, тогда если OK, OM, OL – перпендикуляры из O к сторонам ΔABC, то OK=OM, OK=OL – по св-ству бис
Слайд 8

Теорема о биссектрисах треугольника

Th Биссектрисы треугольника пересекаются в одной точке. Дано: ΔABC, AA1, BB1, CC1 – биссектрисы ΔABC. Доказать: AA1 ∩ BB1 ∩ CC1 = O. Доказательство: Пусть AA1 ∩ BB1 = O, тогда если OK, OM, OL – перпендикуляры из O к сторонам ΔABC, то OK=OM, OK=OL – по св-ству биссектрисы неразвернутого угла → OL=OM → O лежит на биссектрисе С (на СС1) → AA1 ∩ BB1 ∩ CC1 = O. Ч.т.д.

Теорема о серединных перпендикулярах к сторонам треугольника. Th Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Дано: ΔABC, m-серединный п-р к AB, n-серединный п-р к BC, p-серединный перпендикуляр к AC. Доказать:m∩n∩p = O. Доказательство: m∩n O, т.к. если m параллельна
Слайд 9

Теорема о серединных перпендикулярах к сторонам треугольника

Th Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Дано: ΔABC, m-серединный п-р к AB, n-серединный п-р к BC, p-серединный перпендикуляр к AC. Доказать:m∩n∩p = O. Доказательство: m∩n O, т.к. если m параллельна n, то m перпендикулярна BC, и через B проходят 2 прямые AB, BC, перпендикулярные к m, чего не может быть. По св-ству серединного перпендикуляра к отрезку, OA=OB, OB=OC → OA=OC → O лежит на серединном перпендикуляре к AC, т.е. на p → m∩n∩p=O. Ч.т.д.

Теорема о высотах треугольника. Th Прямые, на которых лежат высоты треугольника, пересекаются в одной точке. Дано: ΔABC, AA1, BB1, CC1 – высоты ΔABC. Доказать: AA1∩BB1∩CC1 = O. Доказательство: Проведем через каждую вершину ΔABC прямую, параллельную противоположной стороне. Получим ΔA2B2C2. A2C=B2C,
Слайд 10

Теорема о высотах треугольника

Th Прямые, на которых лежат высоты треугольника, пересекаются в одной точке. Дано: ΔABC, AA1, BB1, CC1 – высоты ΔABC. Доказать: AA1∩BB1∩CC1 = O. Доказательство: Проведем через каждую вершину ΔABC прямую, параллельную противоположной стороне. Получим ΔA2B2C2. A2C=B2C, B2A=C2A, A2B=C2B (объясните почему) и по построению AA1, BB1, CC1- перпендикуляры к сторонам ΔA2B2C2 → AA1, BB1, CC1- серединные перпендикуляры к сторонам ΔA2B2C2 → AA1∩BB1∩CC1 = O. Ч.т.д.

Контрольные вопросы. Дайте определение медиане треугольника. Сформулируйте теорему о медианах треугольника. Дайте определение биссектрисе треугольника. Сформулируйте свойство биссектрисы неразвернутого угла и обратное утверждение. Сформулируйте теорему о биссектрисах треугольника. Дайте определение
Слайд 11

Контрольные вопросы

Дайте определение медиане треугольника. Сформулируйте теорему о медианах треугольника. Дайте определение биссектрисе треугольника. Сформулируйте свойство биссектрисы неразвернутого угла и обратное утверждение. Сформулируйте теорему о биссектрисах треугольника. Дайте определение серединному перпендикуляру к отрезку. Сформулируйте свойство серединного перпендикуляра к отрезку и обратное утверждение. Сформулируйте теорему о серединных перпендикулярах к сторонам треугольника. Дайте определение высоте треугольника. Сформулируйте теорему о высотах треугольника.

Список похожих презентаций

Четыре замечательные точки треугольника

Четыре замечательные точки треугольника

A D B C. ABCD – квадрат. Назовите пары перпендикулярных прямых. Задача № 1. M N Задача №2. а Н А. Отрезок АН – перпендикуляр, опущенный из точки А ...
Расстояние от точки до прямой и плоскости

Расстояние от точки до прямой и плоскости

РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ И ПЛОСКОСТЯМИ. Расстоянием между двумя непересекающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного ...
Чему равна сумма углов треугольника

Чему равна сумма углов треугольника

Вдохновение нужно в геометрии не меньше, чем в поэзии. А.С.Пушкин. Цели урока:. Изучить утверждение о сумме углов треугольника и формировать навык ...
Теорема Пифагора для прямоугольного треугольника

Теорема Пифагора для прямоугольного треугольника

Пифагор Самосский — древнегреческий философ, математик и мистик, создатель религиозно -философской школы пифагор - ейцев. Историю жизни Пифагора трудно ...
Сумма углов треугольника 2

Сумма углов треугольника 2

Цель урока:. Закрепить и проверить знания учащихся по теме «Свойства углов, образованных при пересечении двух параллельных прямых третьей» и «Признаки ...
Сумма углов треугольника

Сумма углов треугольника

Цели урока:. 1. Закрепить и проверить знания учащихся по теме : «Свойство углов образованных при пересечении двух параллельных прямых третьей и признаки ...
Соотношения между сторонами и углами треугольника

Соотношения между сторонами и углами треугольника

Теорема о площади треугольников. Площадь треугольника равна половине произведения двух его сторон на синус угла между ними. Стороны треугольника пропорцианальны ...
Свойство углов треугольника

Свойство углов треугольника

Виды треугольников. B A C E F D N M K Остроугольный Прямоугольный Тупоугольный. Верно ли, что:. - остроугольный треугольник – это треугольник у которого ...
Геометрия в звездном небе. Свойство углов треугольника

Геометрия в звездном небе. Свойство углов треугольника

Правила для членов клуба «ПИФАГОР»: Активно знакомиться с геометрическими терминами. 2. Радостно узнавать геометрические фигуры в повседневной жизни. ...
Высота треугольника

Высота треугольника

Все геометрические фигуры разделить на две группы. Назвать эти группы. Многоугольники. Немногоугольники. пятиугольник четырёхугольник треугольник ...
Внешний угол треугольника. Теорема о внешнем угле треугольника

Внешний угол треугольника. Теорема о внешнем угле треугольника

I. Cумма углов треугольника. 1. На доске доказать теорему о сумме углов треугольника: Сумма углов треугольника равна 1800 2. Решить задачу № 749 (чёт ...
Внешний угол треугольника

Внешний угол треугольника

Общий вид внешнего угла. Понятие. Свойство внешнего угла. Внешний угол. Внешний угол треугольника. Угол, смежный с каким–нибудь углом треугольника, ...
Внешний угол треугольника

Внешний угол треугольника

Треугольник (музыкальный инструмент). Жесткость треугольников. Бермудский треугольник. ВНЕШНИЙ УГОЛ ТРЕУГОЛЬНИКА. У треугольника может быть два тупых ...
Внешний угол произвольного треугольника больше каждого внутреннего, не смежного с ним

Внешний угол произвольного треугольника больше каждого внутреннего, не смежного с ним

Теорема 2. В произвольном треугольнике против большей стороны лежит больший угол. Доказательство. Пусть в треугольнике АВС сторона АВ больше стороны ...
Свойства равнобедренного треугольника

Свойства равнобедренного треугольника

Медиана треугольника. Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Биссектриса треугольника. ...
Свойства равнобедренного треугольника

Свойства равнобедренного треугольника

план урока:. Решение задач по готовым чертежам Виды треугольников по длинам сторон Доказательство теоремы Решение задач Самостоятельная работа. Решить ...
Две замечательные теоремы планеметрии

Две замечательные теоремы планеметрии

Цель:. Доказав теоремы Менелая и Чевы, исследовать их применение при решении задач. Задачи:. Показать применение теорем Менелая и Чевы при решении ...
Соотношения между сторонами и углами прямоугольного треугольника

Соотношения между сторонами и углами прямоугольного треугольника

ОТНОШЕНИЕ ПРОТИВОЛЕЖАЩЕГО КАТЕТА К ГИПОТЕНУЗЕ. ТО, ЧТО ВЫРАЖАЕТ ТЕОРЕМА: «ЕСЛИ ДВА УГЛА ОДНОГО ТРЕУГОЛЬНИКА СООТВЕТСТВЕННО РАВНЫ ДВУМ УГЛАМ ДРУГОГО ...
Задачи на вычисление площади треугольника

Задачи на вычисление площади треугольника

Девиз урока: «Кто ищет – тот всегда найдет…». Личностные цели. самостоятельно добывать знания, анализировать и обобщать; уверенно и грамотно выражать ...
Средняя линия треугольника

Средняя линия треугольника

Каким образом эти треугольники поделили на две группы? А B C. Отрезок, соединяющий середины двух сторон, называют СРЕДНЕЙ ЛИНИЕЙ ТРЕУГОЛЬНИКА. Задача: ...

Конспекты

Замечательные точки треугольника

Замечательные точки треугольника

Министерство образования Республики Беларусь. Учреждение образования. Белорусский Государственный Педагогический Университет имени Максима Танка. ...
Сумма углов треугольника

Сумма углов треугольника

ПЛАН – КОНСПЕКТ УРОКА. «Сумма углов треугольника». ФИО. Васильева Елена Викторовна. . Место работы. ГБОУ СОШ № 8 п.г.т. Алексеевка г.о. ...
Сумма углов треугольника

Сумма углов треугольника

МОУ Берёзовская средняя общеобразовательная школа. Галичского района Костромской области. Учитель Баринова Марина Александровна. Предмет: геометрия. ...
Сумма углов треугольника

Сумма углов треугольника

Скороварова Любовь Витальевна учитель математики первой категории МБОУ ООШ с. Никольское Усманского района Липецкой области. Конспект урока на ...
Сумма углов треугольника

Сумма углов треугольника

Муниципальное казенное общеобразовательное учреждение – средняя общеобразовательная школа с. Андреевка Екатериновского района Саратовской области. ...
Средняя линия треугольника

Средняя линия треугольника

Шамотина Л.В. . . ГБОУ СОШ № 443. Фрунзенский район. СПб. . План-конспект урока геометрии в 8 классе по теме. . «Средняя линия треугольника». ...
Соотношения между сторонами и углами прямоугольного треугольника

Соотношения между сторонами и углами прямоугольного треугольника

МОУ «Лицей №31». Методическая разработка урока. по геометрии в VIII. классе. по проблеме: «Личностно-ориентированный подход ...
Соотношение между сторонами и углами треугольника

Соотношение между сторонами и углами треугольника

Фрагмент урока по теме: «Соотношение между сторонами и углами треугольника» (9 класс, учебник «Геометрия 7 – 9», Л. С. Атанасян). Автор:. учитель ...
Медианы, биссектрисы и высоты треугольника

Медианы, биссектрисы и высоты треугольника

Негосударственное общеобразовательное учреждение. «Миасская средняя школа – интернат № 14 ОАО «РЖД»». Челябинской области. Конспект ...
Медиана, биссектриса, высота треугольника

Медиана, биссектриса, высота треугольника

Урок по теме «Медиана, биссектриса, высота треугольника». Разработала учитель математики МБОУ СОШ №2 с. Александров-Гай Уразова Ольга Владимировна. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:24 октября 2018
Категория:Математика
Содержит:11 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации