- Решение уравнений третьей степени

Презентация "Решение уравнений третьей степени" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21

Презентацию на тему "Решение уравнений третьей степени" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 21 слайд(ов).

Слайды презентации

Решение уравнений третьей степени. Муниципальное образовательное учреждение «Средняя общеобразовательная школа № 24». Исследовательская работа. Работу выполнила ученица 11 класса А Огородникова Лариса Руководитель работы учитель математики Паршева Валентина Васильевна. г.Северодвинск 2006-2007 учебн
Слайд 1

Решение уравнений третьей степени

Муниципальное образовательное учреждение «Средняя общеобразовательная школа № 24»

Исследовательская работа

Работу выполнила ученица 11 класса А Огородникова Лариса Руководитель работы учитель математики Паршева Валентина Васильевна

г.Северодвинск 2006-2007 учебный год

Пример: х3 – 5 х2 + 8 х – 4 = 0 х3 – 2 х2 –3 х2 + 8х – 4 = 0 х2 (х – 2) – (3 х2 – 8х + 4) = 0 3 х2 – 8х + 4 = 0 х = 2 х = 2/3 х2 (х – 2) – (3 (х –2) (х – 2/3)) = 0 х2 (х – 2) – ((х – 2) (3х – 2)) = 0 (х – 2)(х2 – 3х + 2) = 0 х – 2 = 0 х2 – 3х + 2 = 0 х = 2 х = 2 х = 1 Ответ: х = 2; х = 1.
Слайд 2

Пример: х3 – 5 х2 + 8 х – 4 = 0 х3 – 2 х2 –3 х2 + 8х – 4 = 0 х2 (х – 2) – (3 х2 – 8х + 4) = 0 3 х2 – 8х + 4 = 0 х = 2 х = 2/3 х2 (х – 2) – (3 (х –2) (х – 2/3)) = 0 х2 (х – 2) – ((х – 2) (3х – 2)) = 0 (х – 2)(х2 – 3х + 2) = 0 х – 2 = 0 х2 – 3х + 2 = 0 х = 2 х = 2 х = 1 Ответ: х = 2; х = 1.

Цель работы: Выявить способы решения уравнения третьей степени. Задачи работы: 1) Познакомиться с историческими фактами, связанными с данным вопросом. 2) Описать технологии различных существующих способов решения уравнений третьей степени. 3) Провести анализ этих способов, сравнить их. 4) Привести п
Слайд 3

Цель работы: Выявить способы решения уравнения третьей степени. Задачи работы: 1) Познакомиться с историческими фактами, связанными с данным вопросом. 2) Описать технологии различных существующих способов решения уравнений третьей степени. 3) Провести анализ этих способов, сравнить их. 4) Привести примеры практического применения различных способов решения практических уравнений. Объект исследования: уравнения третьей степени. Предмет исследования: способы решения уравнений третьей степени.

На рубеже XV и XVI веков был подытожен опыт решения уравнений третьей степени в одной из первых печатных книг по математике «Сумма знаний по арифметике, геометрии, отношениям и пропорциональности», напечатанной в Венеции в 1494 году. Ее автор-монах Лука Пачоли, друг великого Леонардо да Винчи. х3 +
Слайд 4

На рубеже XV и XVI веков был подытожен опыт решения уравнений третьей степени в одной из первых печатных книг по математике «Сумма знаний по арифметике, геометрии, отношениям и пропорциональности», напечатанной в Венеции в 1494 году. Ее автор-монах Лука Пачоли, друг великого Леонардо да Винчи.

х3 + ах = b (1) х3 = ах + b (2)

В конце 1534 года ученик Ферро Антонио Марио Фиоре, знавший это решение, вызвал на поединок математика из Венеции Никколо Тарталью.

Тарталья прилагает титанические усилия, и за 8 дней до назначенного срока (срок истекал 12 февраля 1535 года) счастье улыбается ему: искомый способ найден. После этого Тарталья за 2 часа решил все задачи противника, в то время как Фиоре не решил к сроку не одной задачи Тартальи.

К 1539 году Кардано заканчивает свою первую книгу целиком посвященную математике « Практика общей арифметики ». По его замыслу, она должна была заменить книгу Пачоли. Кардано родился 24 сентября 1501 года в Павии, в семье юриста. В январе 1539 года Кардано обращается к Тарталье с просьбой передать е
Слайд 5

К 1539 году Кардано заканчивает свою первую книгу целиком посвященную математике « Практика общей арифметики ». По его замыслу, она должна была заменить книгу Пачоли.

Кардано родился 24 сентября 1501 года в Павии, в семье юриста.

В январе 1539 года Кардано обращается к Тарталье с просьбой передать ему правила решения уравнения (1) или для опубликования в своей книге, или под обещание держать сообщенное в секрете. Тарталья отказывается. 12 февраля Кардано повторяет свою просьбу. Тарталья неумолим. 13 марта Кардано преглашает Тарталью к себе в Милан, обещая представить его губернатору Ломбардии. По-видимому, эта перспектива прельстила Тарталью: он принимает приглашение. 25 марта в доме Кардано состоялась решающая беседа. Итак, Тарталья дал уговорить себя.

В 1543 году Кардано и Феррари поехали в Болонью, где дела Наве позволил им познакомиться с бумагами покойного дель Ферро. Там они убедились, что последнему уже было известно правило Тартальи. К 1543 году Кардано научился решать не только уравнения (1) и (2), но и уравнения х3 + b = ax (3) , а также
Слайд 6

В 1543 году Кардано и Феррари поехали в Болонью, где дела Наве позволил им познакомиться с бумагами покойного дель Ферро. Там они убедились, что последнему уже было известно правило Тартальи. К 1543 году Кардано научился решать не только уравнения (1) и (2), но и уравнения х3 + b = ax (3) , а также «полное» кубическое уравнение, т.е. уравнение, содержащие член с х2. К тому же времени Феррари придумал, как решать уравнения четвертой степени.

«Великое искусство». х3 + b = ax (3). Кардано решил уравнение (3), дав очень смелое по тем временам рассуждение, обыгрывающее отрицательность корня. Уравнение (2) можно решить при помощи подстановки х = +
Слайд 7

«Великое искусство»

х3 + b = ax (3)

Кардано решил уравнение (3), дав очень смелое по тем временам рассуждение, обыгрывающее отрицательность корня.

Уравнение (2) можно решить при помощи подстановки х = +

Кардано полностью разобрался и с общим кубическим уравнением х3 + ах2 + bх +с = 0, заметив, что подстановка х = у – а/3 уничтожает член с х2. В 1545 году Кардано все известное ему о кубических уравнениях включил в вышедшую книгу « Великое искусство или о правилах алгебры». Если уравнение х3 + ах2 +
Слайд 8

Кардано полностью разобрался и с общим кубическим уравнением х3 + ах2 + bх +с = 0, заметив, что подстановка х = у – а/3 уничтожает член с х2.

В 1545 году Кардано все известное ему о кубических уравнениях включил в вышедшую книгу « Великое искусство или о правилах алгебры».

Если уравнение х3 + ах2 + bх +с = 0 имеет три вещественных корня, то их сумма равна –a.

х3 + рх + q = 0 (1) (2)
Слайд 9

х3 + рх + q = 0 (1) (2)

Первый пример: Здесь р = 6 и q = -2. Наша формула дает: В школе нас приучили, что все корни должны извлекаться, и полученный ответ может показаться нам недостаточно красивым. Но согласитесь, что никакой подбор не помог бы нам узнать, что эта разность двух кубических корней является решением такого п
Слайд 10

Первый пример:

Здесь р = 6 и q = -2. Наша формула дает:

В школе нас приучили, что все корни должны извлекаться, и полученный ответ может показаться нам недостаточно красивым. Но согласитесь, что никакой подбор не помог бы нам узнать, что эта разность двух кубических корней является решением такого простого уравнения. Так что этот результат можно записать нашей формуле в актив.

Здесь р = 6 и q =-2.Наша формула дает:

Второй пример: . Формула (3) дает: Ответ более громоздок. Это число можно найти приближенно с помощью таблиц, и чем точнее будут таблицы, тем ближе будет результат к единице. Причина проста: это число равно единице. Но из формулы этого не видно, и это, пожалуй, недостаток формулы: ведь при решении к
Слайд 11

Второй пример: . Формула (3) дает:

Ответ более громоздок. Это число можно найти приближенно с помощью таблиц, и чем точнее будут таблицы, тем ближе будет результат к единице. Причина проста: это число равно единице. Но из формулы этого не видно, и это, пожалуй, недостаток формулы: ведь при решении квадратного уравнения с целыми коэффициентами, мы сразу видим, является ли оно рациональным.

Третий пример: (х + 1)(х + 2)(х - 3) = 0. Сразу видно, что это уравнение имеет три решения: -1, -2, 3. Но попробуем решить его по формуле. Раскрываем скобки. и применяем формулу (3):
Слайд 12

Третий пример: (х + 1)(х + 2)(х - 3) = 0.

Сразу видно, что это уравнение имеет три решения: -1, -2, 3. Но попробуем решить его по формуле. Раскрываем скобки

и применяем формулу (3):

Экстремумы многочлена третьей степени. у = ах2 + bх + с (1) ( ). у = Рассмотрим, как находятся точки максимума и минимума функции ах3 + bx2 + сх + d. у 0 x. В первом и втором случаях говорят, что функция монотонна в точке х =. (в первом случае она возрастает, во втором – убывает). В третьем и четвер
Слайд 13

Экстремумы многочлена третьей степени

у = ах2 + bх + с (1) ( ).

у = Рассмотрим, как находятся точки максимума и минимума функции ах3 + bx2 + сх + d.

у 0 x

В первом и втором случаях говорят, что функция монотонна в точке х =

(в первом случае она возрастает, во втором – убывает). В третьем и четвертом случаях говорят, что функция имеет экстремум в точке х =

(в третьем случае – минимум, в четвертом – максимум).

Корень квадратного трехчлена является его точкой экстремума тогда и только тогда, когда этот корень – двукратный.
Слайд 14

Корень квадратного трехчлена является его точкой экстремума тогда и только тогда, когда этот корень – двукратный.

Теорема 1. Для того, чтобы точка х= была точкой экстремума функции у = ах2+bх +с, необходимо и достаточно, чтобы существовало такое число m, при котором многочлен ах2+ bх + с– m имеет двукратный корень х = .
Слайд 15

Теорема 1. Для того, чтобы точка х= была точкой экстремума функции у = ах2+bх +с, необходимо и достаточно, чтобы существовало такое число m, при котором многочлен ах2+ bх + с– m имеет двукратный корень х = .

Лемма. Пусть дан многочлен третьей степени у = ах3 + bx2 + сх + d. ( ), и пусть х = - его действительный корень. Тогда у = ах3 + bx2 + сх + d = =а(х - )( , (3) где p и q – некоторые действительные числа.
Слайд 16

Лемма. Пусть дан многочлен третьей степени у = ах3 + bx2 + сх + d. ( ), и пусть х = - его действительный корень. Тогда у = ах3 + bx2 + сх + d = =а(х - )( , (3) где p и q – некоторые действительные числа.

Теорема 2. Для того чтобы точка х = была точкой экстремума функции у = ах3 + bx2 + сх + d, необходимо и достаточно, чтобы существовало такое число m, при котором многочлен P(x) = ах3 + bx2 + сх + d – m имеет двукратный корень х = , то есть P(x)= a (4) где .
Слайд 17

Теорема 2. Для того чтобы точка х = была точкой экстремума функции у = ах3 + bx2 + сх + d, необходимо и достаточно, чтобы существовало такое число m, при котором многочлен P(x) = ах3 + bx2 + сх + d – m имеет двукратный корень х = , то есть P(x)= a (4) где .

Теорема 3.(достаточные условия максимума и минимума). Пусть функция у = ах3 + bx2 + сх + d имеет экстремум в точке х = и m – значение функции в точке х = . Представим многочлен P(x) = ах3 + bx2 + сх + d – m в виде (4). Тогда, если >0, то х = - точка максимума; если
Слайд 18

Теорема 3.(достаточные условия максимума и минимума). Пусть функция у = ах3 + bx2 + сх + d имеет экстремум в точке х = и m – значение функции в точке х = . Представим многочлен P(x) = ах3 + bx2 + сх + d – m в виде (4). Тогда, если >0, то х = - точка максимума; если <0, то х = - точка минимума.

y=P(x) y=Q(x) х m. Исследовать на экстремумы функцию у = х3 - 3x2 - 9х + 5 (5) и построить ее график. Попробуем подобрать числа m, так, чтобы выполнялось тождество. (причем х3 - 3x2 - 9х + 5 – m = ( +2 ) x2 + (2 + 2)х -. Для отыскания значения m, мы получим систему уравнений. Эта система имеет следу
Слайд 19

y=P(x) y=Q(x) х m

Исследовать на экстремумы функцию у = х3 - 3x2 - 9х + 5 (5) и построить ее график. Попробуем подобрать числа m,

так, чтобы выполнялось тождество

(причем х3 - 3x2 - 9х + 5 – m = ( +2 ) x2 + (2 + 2)х -

Для отыскания значения m,

мы получим систему уравнений

Эта система имеет следующие решения:

, m 1= 10 , m2 = -22. х3 - 3x2 - 9х + 5 – m = ). Отсюда

Выводы. В процессе работы мы познакомились с историей развития проблемы решения уравнения третьей степени. Теоретическая значимость полученных результатов заключается в том, что осознано место формулы Кардано в решении некоторых уравнений третьей степени. Мы убедились в том, что формула решения урав
Слайд 20

Выводы

В процессе работы мы познакомились с историей развития проблемы решения уравнения третьей степени. Теоретическая значимость полученных результатов заключается в том, что осознано место формулы Кардано в решении некоторых уравнений третьей степени. Мы убедились в том, что формула решения уравнений третьей степени существует, но она не популярна из-за ее громоздкости и не очень надежна, т.к. не всегда достигает конечного результата. Т.к. очень часто приходиться исследовать на экстремумы функции в правой части которой многочлен третьей степени, то большое практическое значение имеет алгоритм нахождения экстремумов многочлена третьей степени, который рассмотрен в работе.

Направления дальнейшего исследования. В дальнейшем можно рассматривать такие вопросы: как узнать заранее, какие корни имеет уравнение третьей степени, можно ли кубическое уравнение решить графическим способом, если можно, то как; как оценить приближенно корни кубического уравнения; как построить гра
Слайд 21

Направления дальнейшего исследования

В дальнейшем можно рассматривать такие вопросы: как узнать заранее, какие корни имеет уравнение третьей степени, можно ли кубическое уравнение решить графическим способом, если можно, то как; как оценить приближенно корни кубического уравнения; как построить график кубического четырехчленна.

Список похожих презентаций

Решение диофантовых уравнений

Решение диофантовых уравнений

Цели и задачи. Биография Диофанта Диофантовы уравнения с одной неизвестной Диофантовые уравнения первой степени Диофантовые уравнения высших степеней ...
Методы решения систем линейных уравнений 1- ой степени

Методы решения систем линейных уравнений 1- ой степени

Проверка домашнего задания. Устная работа. Какие способы решения систем линейных уравнений мы знаем? Сколько их? Какой из способов самый наглядный? ...
8 класс "Решение квадратных уравнений"

8 класс "Решение квадратных уравнений"

. . . . . . «Уравнение – это золотой ключ, открывающий все математические тайны». . Цель: привести в систему знания о квадратных уравнениях и умение ...
Итоговый урок: решение систем уравнений

Итоговый урок: решение систем уравнений

ЦЕЛИ УРОКА. 1. повторить определения понятий: -система уравнений; -решение систем уравнений; -способы решения систем уравнений. 2. Найти практическое ...
Графическое решение уравнений

Графическое решение уравнений

АЛГЕБРА– 7 КЛАСС. ТЕМА: Графическое решение уравнений. Проверка домашнего задания. № 973 № 974. № 976 (а) построить функцию у = х2, построить функцию ...
Графическое решение уравнений

Графическое решение уравнений

Установите соответствие:. А) парабола Б) ветвь параболы С) «галочка» Д) прямая. 4, 6 9 3. х у 0 1 х = 0. х = 0, х = 1. х = -2, 6 0 2 3 4 -2 6. . -2 ...
Графическое решение систем уравнений

Графическое решение систем уравнений

Лаборатория «ТРУД». Твори, Решай, Учись, Добивайся с интересом и удовольствием! Руководители лаборатории. Начальник лаборатории: Ноумэн Ноу Мэнович ...
Графическое решение систем уравнений

Графическое решение систем уравнений

Правило решения системы уравнений графическим способом. Построить графики каждого из уравнений системы. Найти координаты точки пересечения построенных ...
Графическое решение квадратных уравнений

Графическое решение квадратных уравнений

Немного истории. Еще в древнем Вавилоне могли решить некоторые виды квадратных уравнений. Диофант Александрийский, Аль- Хорезми . Евклид Омар Хайям. ...
Графическое решение квадратных уравнений

Графическое решение квадратных уравнений

Цель урока. формировать умение решать квадратные уравнения графическим способом. Решить уравнение х2 – 2х –3 = 0. Решение. I способ Построим график ...
Ох уж эти показательные… Решение показательных уравнений и неравенств

Ох уж эти показательные… Решение показательных уравнений и неравенств

Ответьте на вопросы. 1. Какая функция называется показательной? 2. Какова область определения показательной функции? 3. Какова область значений показательной ...
Решение задач на движение в противоположных направлениях

Решение задач на движение в противоположных направлениях

18 марта. Классная работа. До школы Таня идёт 5 минут. Сколько времени ей понадобится, чтобы дойти до школы вместе с сестрой? 1 лошадь пробегает до ...
Решение задач на встречное движение

Решение задач на встречное движение

«Хотим всё знать!». 450 50 100 :9 1000 10. Математическая разминка. 8 19 Ж 4 19 И 2 19 В 9 19 Е 11 19 И 14 19 Е 10 19 Н 1 19 Д д в и ж е н и е. Тема ...
Решение задач в 2-3 действия

Решение задач в 2-3 действия

Все ль на месте? Всё ль в порядке? Ручки, книжки и тетрадки А линейки и карандаши? Все готовы отвечать? А получать оценку пять? Организационный момент. ...
Решение заданий С2 ЕГЭ-2010

Решение заданий С2 ЕГЭ-2010

Задача №1:. В прямоугольной системе координат заданы точки O(0;0), D(-5;0), C(0;-12). Найдите площадь боковой поверхности конуса, полученного вращением ...
Примеры иррациональных уравнений

Примеры иррациональных уравнений

Цели урока. Ввести понятие иррациональных уравнений и показать способы их решений. Развивать умение выделять главное, существенное в изучаемом материале, ...
Повторение. Решение задач за курс начальной школы

Повторение. Решение задач за курс начальной школы

Вычислите устно 51 – 38 35 + 47 14  5 39 + 32 73 – 57 80 : 16 34  2 72 : 12 25  6. 38 + 47 : 17  13 ? 45 – 27  3 + 36 ? 4  19 – 31 : 15 ? 84 ...
Определение арифметического корня п-ой степени

Определение арифметического корня п-ой степени

Повторение:. 1) Имеет ли смысл выражение:. ? 2) Докажите, что:. Число 5 есть корень третьей степени из 125. т. к. Число 0 есть корень восьмой степени ...
Возведение в степень произведения и степени

Возведение в степень произведения и степени

Цели:. Усвоение свойств степени. Формирование навыка возведения в степень произведения и степени. Развитие зрительной памяти, внимания, смысловой ...
Виды показательных уравнений и способы их решения

Виды показательных уравнений и способы их решения

Умные мысли. Мне приходится делить время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее. Политика существует для данного ...

Конспекты

Решение дробных рациональных уравнений

Решение дробных рациональных уравнений

«. Решение дробно-рациональных уравнений». . Урок: алгебра 9 класс. Тема. :. . Решение дробных рациональных уравнений. Цель:. . познакомить ...
Решение дробных рациональных уравнений

Решение дробных рациональных уравнений

Муниципальное бюджетное общеобразовательное учреждение. «Новомихайловская средняя общеобразовательная школа». Татарского района Новосибирской области. ...
Методы решение показательных уравнений

Методы решение показательных уравнений

Автор: Дементьева Ирина Николаевна. Место работы: МБОУ СОШ №2. с.Кривополянье Чаплыгинского района. Липецкой области. . Должность: учитель ...
Решение дробных рациональных уравнений

Решение дробных рациональных уравнений

8 класс. Тема « Решение дробных рациональных уравнений». Цель: закрепить изученный материал в ходе выполнения упражнений, развивать навыки решения ...
Методическая разработка Урок математики в 6 классе Решение уравнений (урок закрепления)

Методическая разработка Урок математики в 6 классе Решение уравнений (урок закрепления)

Муниципальное образовательное учреждение. Средняя общеобразовательная школа №40 п.г.т. Шерловая Гора. Методическая разработка. Урок математики ...
Решение алгебраических уравнений

Решение алгебраических уравнений

Тема: Решение алгебраических уравнений. Цели урока:. . систематизировать, обобщить, расширить знания и умения учащихся, связанные с применением ...
Логарифмы и решение логарифмических уравнений

Логарифмы и решение логарифмических уравнений

Кукса Людмила Сергеевна. учитель математики. МБОУСОШ № 3 Ленинградского района Краснодарского края. Урок алгебры и начала анализа по теме. ...
Логарифмы и решение логарифмических уравнений

Логарифмы и решение логарифмических уравнений

Ибрагимов Рустем Фаткулкадирович. учитель математики. МБОУ «Русско-татарская общеобразовательная средняя школа №81». Урок алгебры и начала ...
Квадратные уравнения. Виды квадратных уравнений. Решение неполных квадратных уравнений

Квадратные уравнения. Виды квадратных уравнений. Решение неполных квадратных уравнений

Тема урока: Квадратные уравнения. Виды квадратных уравнений. Решение неполных квадратных уравнений. Цели урока:. Образовательные. :. . ...
Квадратные уравнения. Основные понятия. Решение неполных квадратных уравнений

Квадратные уравнения. Основные понятия. Решение неполных квадратных уравнений

Тема:. «Квадратные уравнения. Основные понятия. Решение неполных квадратных уравнений». Тип урока:. урок изучения нового материала. Цели урока:. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:8 июля 2019
Категория:Математика
Содержит:21 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации