Презентация "Теория вероятности" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28

Презентацию на тему "Теория вероятности" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 28 слайд(ов).

Слайды презентации

Из истории «Теории вероятностей»
Слайд 1

Из истории «Теории вероятностей»

Автор проекта ученица 10 класса «А» ГОУ СОШ № 420 г. Москвы Лавренова Юлия Руководитель проекта учитель математики ГОУ СОШ № 420 г. Москвы Афанасьева С.В.
Слайд 2

Автор проекта ученица 10 класса «А» ГОУ СОШ № 420 г. Москвы Лавренова Юлия Руководитель проекта учитель математики ГОУ СОШ № 420 г. Москвы Афанасьева С.В.

Вечные истины. Математику многие любят за ее вечные истины: дважды два всегда четыре, сумма четных чисел четна, а площадь прямоугольника равна произведению его смежных сторон. В любой задаче, которую мы решаем на уроках математики, у всех получается один и тот же ответ – нужно только не делать ошибо
Слайд 3

Вечные истины

Математику многие любят за ее вечные истины: дважды два всегда четыре, сумма четных чисел четна, а площадь прямоугольника равна произведению его смежных сторон.

В любой задаче, которую мы решаем на уроках математики, у всех получается один и тот же ответ – нужно только не делать ошибок в решении.

2 х 2 = 4 чет. + чет. = чет.

Случайные события. Реальная жизнь оказывается не такой простой и однозначной. Исходы многих явлений невозможно предсказать заранее, какой бы полной информацией мы о них не располагали. Нельзя, например, сказать наверняка, какой стороной упадет брошенная вверх монета, когда в следующем году выпадет п
Слайд 4

Случайные события

Реальная жизнь оказывается не такой простой и однозначной. Исходы многих явлений невозможно предсказать заранее, какой бы полной информацией мы о них не располагали.

Нельзя, например, сказать наверняка, какой стороной упадет брошенная вверх монета, когда в следующем году выпадет первый снег или сколько человек в городе захотят в течение ближайшего часа позвонить по телефону. Такие непредсказуемые явления называются случайными

Случай имеет свои законы ! Однако случай тоже имеет свои законы, которые начинают проявляться при многократном повторении случайных явлений. Именно такие закономерности изучаются в специальном разделе математики – Теории вероятностей.
Слайд 5

Случай имеет свои законы !

Однако случай тоже имеет свои законы, которые начинают проявляться при многократном повторении случайных явлений.

Именно такие закономерности изучаются в специальном разделе математики – Теории вероятностей.

Случайность и здравый смысл. «Теория вероятностей есть в сущности не что иное, как здравый смысл, сведенной к исчислению» Лаплас
Слайд 6

Случайность и здравый смысл

«Теория вероятностей есть в сущности не что иное, как здравый смысл, сведенной к исчислению» Лаплас

В настоящее время Теория вероятностей имеет статус точной науки наравне с арифметикой, алгеброй, геометрией, тригонометрией и т.д. Этот раздел математики уже входит в школьные учебники и весьма вероятно, что в скором времени будет включен в программу экзамена. А начиналось все весьма своеобразно…
Слайд 7

В настоящее время Теория вероятностей имеет статус точной науки наравне с арифметикой, алгеброй, геометрией, тригонометрией и т.д. Этот раздел математики уже входит в школьные учебники и весьма вероятно, что в скором времени будет включен в программу экзамена. А начиналось все весьма своеобразно…

Азартные игры. Богатый материал для наблюдения за случайностью на протяжении многих веков давали азартные игры
Слайд 8

Азартные игры

Богатый материал для наблюдения за случайностью на протяжении многих веков давали азартные игры

У истоков науки. В археологических раскопках специально обработанные для игры кости животных встречаются, начиная с V века до н.э. Самый древний игральный кубик найден в Северном Ираке и относится к IV тысячелетию до н.э.
Слайд 9

У истоков науки

В археологических раскопках специально обработанные для игры кости животных встречаются, начиная с V века до н.э.

Самый древний игральный кубик найден в Северном Ираке и относится к IV тысячелетию до н.э.

Закономерности в случайных событиях. Люди, многократно следившие за бросанием игральных костей, замечали некоторые закономерности, управляющие этой игрой. Результаты этих наблюдений формулировались как «Золотые правила» и были известны многим игрокам. Однако первые вычисления появились только в X-XI
Слайд 10

Закономерности в случайных событиях

Люди, многократно следившие за бросанием игральных костей, замечали некоторые закономерности, управляющие этой игрой. Результаты этих наблюдений формулировались как «Золотые правила» и были известны многим игрокам. Однако первые вычисления появились только в X-XI веках.

Знаменитая задача. Одна из самых знаменитых задач, способствовавших развитию теории вероятностей, была задача о разделе ставки, помещенная в книге Луки Паччиоли (1445- ок.1514). Книга называлась «Сумма знаний по арифметике, геометрии, отношении и пропорции» и была опубликована в Венеции в 1494 году.
Слайд 11

Знаменитая задача

Одна из самых знаменитых задач, способствовавших развитию теории вероятностей, была задача о разделе ставки, помещенная в книге Луки Паччиоли (1445- ок.1514). Книга называлась «Сумма знаний по арифметике, геометрии, отношении и пропорции» и была опубликована в Венеции в 1494 году.

Задача Паччиоли

Двое играют в некоторую игру, где шансы на победу у каждого игрока одинаковы. Игроки договорились играть до 6 побед, но игра остановилась, когда у одного было 5 побед, а у другого – 3 . Как следует разделить приз? (Сам Паччиоли считал, что приз надо делить пропорционально количеству выигранных парти
Слайд 12

Двое играют в некоторую игру, где шансы на победу у каждого игрока одинаковы. Игроки договорились играть до 6 побед, но игра остановилась, когда у одного было 5 побед, а у другого – 3 . Как следует разделить приз? (Сам Паччиоли считал, что приз надо делить пропорционально количеству выигранных партий. Однако правильный ответ не так прост.)

Новые имена. Следующим человеком, который внес значительный вклад в осмысление законов, управляющих случаем, был Галилео Галилей (1564 -1642). Именно он заметил, что результаты измерений носят случайный характер. Результаты физических экспериментов нуждаются в поправках, основанных на теории вероятн
Слайд 13

Новые имена

Следующим человеком, который внес значительный вклад в осмысление законов, управляющих случаем, был Галилео Галилей (1564 -1642). Именно он заметил, что результаты измерений носят случайный характер. Результаты физических экспериментов нуждаются в поправках, основанных на теории вероятностей.

Важный этап в развитии теории вероятностей связан с именами французских математиков Блеза Паскаля (1623 -1662) и Пьера Ферма (1601- 1665). В ответах этих ученых на запросы азартных игроков и переписке между собой были введены основные понятия этой теории – вероятность события и математическое ожидан
Слайд 14

Важный этап в развитии теории вероятностей связан с именами французских математиков Блеза Паскаля (1623 -1662) и Пьера Ферма (1601- 1665). В ответах этих ученых на запросы азартных игроков и переписке между собой были введены основные понятия этой теории – вероятность события и математическое ожидание

Задача кавалера де Мере

При четырехкратном бросании игральной кости что происходит чаще: выпадет шестерка хотя бы один раз или же шестерка не появится ни разу? Эта одна из тех задач , с которыми кавалер де Мере обратился к Б.Паскалю в надежде узнать выигрышную стратегию. Решение задачи кавалера де Мере
Слайд 15

При четырехкратном бросании игральной кости что происходит чаще: выпадет шестерка хотя бы один раз или же шестерка не появится ни разу?

Эта одна из тех задач , с которыми кавалер де Мере обратился к Б.Паскалю в надежде узнать выигрышную стратегию.

Решение задачи кавалера де Мере

На каждой из четырех костей может выпасть любое из шести чисел, независимо друг от друга. Всего вариантов 6 ∙ 6 ∙ 6 ∙ 6 = 1296 Количество вариантов без шестерки будет, соответственно, 5 ∙ 5 ∙ 5 ∙ 5 = 625 В остальных 1296 – 625 = 671 вариантах шестерка выпадет хотя бы один раз. Значит, появление шест
Слайд 16

На каждой из четырех костей может выпасть любое из шести чисел, независимо друг от друга. Всего вариантов 6 ∙ 6 ∙ 6 ∙ 6 = 1296 Количество вариантов без шестерки будет, соответственно, 5 ∙ 5 ∙ 5 ∙ 5 = 625 В остальных 1296 – 625 = 671 вариантах шестерка выпадет хотя бы один раз. Значит, появление шестерки хотя бы один раз при четырех бросаниях происходит чаще, чем ее непоявление.

На пути становления науки. Выдающийся голландский математик, механик, астроном и изобретатель Х.Гюйгенс (1629 - 1695) под влиянием переписки Паскаля и Ферма заинтересовался задачами вероятностного характера, результатом чего явилась работа «О расчетах в азартных играх». Трактат Гюйгенса выдержал нес
Слайд 17

На пути становления науки

Выдающийся голландский математик, механик, астроном и изобретатель Х.Гюйгенс (1629 - 1695) под влиянием переписки Паскаля и Ферма заинтересовался задачами вероятностного характера, результатом чего явилась работа «О расчетах в азартных играх». Трактат Гюйгенса выдержал несколько изданий и был единственной книгой по теории вероятностей в XVII веке.

Но как математическая наука теории вероятностей начинается с работы выдающегося швейцарского математика Якоба Бернулли (1654 -1705) «Искусство предположений». В этом трактате доказано ряд теорем, в том числе и самая известная теорема «Закон больших чисел»
Слайд 18

Но как математическая наука теории вероятностей начинается с работы выдающегося швейцарского математика Якоба Бернулли (1654 -1705) «Искусство предположений». В этом трактате доказано ряд теорем, в том числе и самая известная теорема «Закон больших чисел»

Развитие естествознания и техники точных измерений, военного дела и связанной с ней теории стрельбы, учение о молекулах в кинетической теории газов ставило перед учеными конца XVIII века все новые и новые задачи теории вероятностей
Слайд 19

Развитие естествознания и техники точных измерений, военного дела и связанной с ней теории стрельбы, учение о молекулах в кинетической теории газов ставило перед учеными конца XVIII века все новые и новые задачи теории вероятностей

История продолжается. Крупнейшими представителями теории вероятностей как науки были математики П.Лаплас (1749-1827) К. Гаусс (1777-1855) С. Пуассон (1781-1840)
Слайд 20

История продолжается

Крупнейшими представителями теории вероятностей как науки были математики П.Лаплас (1749-1827) К. Гаусс (1777-1855) С. Пуассон (1781-1840)

Русский период в развитии теории вероятностей. Особенно быстро теория вероятностей развивалась во второй половине XIX и XX вв. Здесь фундаментальные открытия были сделаны математиками Петербургской школы П.Л.Чебышёвым (1821-1894), А.М.Ляпуновым (1857-1918), А.А.Марковым (1856-1922).
Слайд 21

Русский период в развитии теории вероятностей

Особенно быстро теория вероятностей развивалась во второй половине XIX и XX вв. Здесь фундаментальные открытия были сделаны математиками Петербургской школы П.Л.Чебышёвым (1821-1894), А.М.Ляпуновым (1857-1918), А.А.Марковым (1856-1922).

Недалекое прошлое. Строгое логическое обоснование теории вероятностей произошло в XX в. и связано, в первую очередь, с именами математиков. С.Н.Бернштейна, А.Н.Колмогорова А.Я.Хинчина, Б.П.Гнеденко, Ю.В.Линника
Слайд 22

Недалекое прошлое

Строгое логическое обоснование теории вероятностей произошло в XX в. и связано, в первую очередь, с именами математиков

С.Н.Бернштейна, А.Н.Колмогорова А.Я.Хинчина, Б.П.Гнеденко, Ю.В.Линника

С.Н.Бернштейн (1880 - 1968). Вклад в развитие теории вероятностей В 1917 году разработал самую первую по времени аксиоматику теории вероятностей.
Слайд 23

С.Н.Бернштейн (1880 - 1968)

Вклад в развитие теории вероятностей В 1917 году разработал самую первую по времени аксиоматику теории вероятностей.

А.Н.Колмогоров ( 1903 - 1987 ). Вклад в развитие теории вероятностей Положил начало общей теории случайных процессов. В 1933 году разработал аксиоматику, которая в настоящее время является общепринятой.
Слайд 24

А.Н.Колмогоров ( 1903 - 1987 )

Вклад в развитие теории вероятностей Положил начало общей теории случайных процессов. В 1933 году разработал аксиоматику, которая в настоящее время является общепринятой.

А.Я. Хинчин (1894 - 1959). Вклад в развитие теории вероятностей Положил начало общей теории случайных процессов. Разработал свою аксиоматику теории вероятностей.
Слайд 25

А.Я. Хинчин (1894 - 1959)

Вклад в развитие теории вероятностей Положил начало общей теории случайных процессов. Разработал свою аксиоматику теории вероятностей.

Б.П.Гнеденко ( 1912-1995 ). Вклад в развитие теории вероятностей. В начале июня 1941 года защитил докторскую диссертацию "Предельные теоремы для независимых случайных величин". С 1960 года работает профессором кафедры теории вероятностей механико-математического факультета МГУ. С 1966 года
Слайд 26

Б.П.Гнеденко ( 1912-1995 )

Вклад в развитие теории вероятностей

В начале июня 1941 года защитил докторскую диссертацию "Предельные теоремы для независимых случайных величин"

С 1960 года работает профессором кафедры теории вероятностей механико-математического факультета МГУ. С 1966 года он назначается заведующим этой кафедрой и руководит ею до последних дней своей жизни.

Ю.В.Линник (1915 - 1972). Вклад в развитие теории вероятностей Основные труды по теории чисел, теории вероятности и математической статистики.
Слайд 27

Ю.В.Линник (1915 - 1972)

Вклад в развитие теории вероятностей Основные труды по теории чисел, теории вероятности и математической статистики.

Благодарю за внимание! Предлагаю вам посмотреть следующую часть презентации «Основные понятия теории вероятностей»
Слайд 28

Благодарю за внимание!

Предлагаю вам посмотреть следующую часть презентации «Основные понятия теории вероятностей»

Список похожих презентаций

Теория вероятности и статистика

Теория вероятности и статистика

Определение. Пусть А и В – два события, относящиеся к одному случайному опыту. Взяв все элементарные события, которые благоприятствуют и событию А, ...
Теория вероятности события

Теория вероятности события

Введение в комбинаторику. В математике существует немало задач, в которых требуется из имеющихся элементов составить различные наборы, подсчитать ...
Теория вероятности и статистика

Теория вероятности и статистика

Вероятность и статистика. Вероятностно-статистические закономерности изучает специальный раздел математики – теория вероятности. Теория вероятностей ...
Теория вероятности в школе

Теория вероятности в школе

Теория вероятностей – математическая наука, изучающая закономерности случайных явлений. Знание закономерностей, которым подчиняются массовые случайные ...
Математическая статистика и теория вероятности

Математическая статистика и теория вероятности

Группы и специальности потоков. 92... Электроэнергетические системы и сети (100200) - 140205 93... Электроснабжение (100400) - 140211 94... Релейная ...
Комбинаторика и теория вероятности

Комбинаторика и теория вероятности

Комбинаторика. «комбинаторика» происходит от латинского слова combinare – «соединять, сочетать». Определение. Комбинаторика – это раздел математики, ...
Классическая теория вероятности

Классическая теория вероятности

Актуальность. Актуальность изучения данной темы заключается в том, что некоторые задачи, которые ставит перед нами реальная жизнь нельзя решить без ...
Теория случайностей

Теория случайностей

Актуальность выбора темы моей работы объясняется тем, что в настоящее время теория вероятностей пользуется всё большей популярностью – её вводят как ...
Теория множеств

Теория множеств

Элементы теории множеств. © Аликина Е.Б. Основу теории математики составляют понятия и отношения между этими понятиями, которые устанавливаются при ...
Теория катастроф

Теория катастроф

Теория катастроф. Теория катастроф — раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию ...
История теории вероятности

История теории вероятности

Человечество всегда стремилось к некоторого рода предсказаниям. Любая наука основана на этом. Однако предвидение фактов не может быть абсолютным, ...
Теория вероятностей и комбинаторные правила

Теория вероятностей и комбинаторные правила

Классическое определение вероятности. Стохастическим называют опыт, если заранее нельзя предугадать его результаты. Результаты (исходы) такого опыта ...
Теория вероятностей

Теория вероятностей

№ 1. В кармане у Миши 4 конфеты – «Грильяж», «Маска», «Белочка», «Красная шапочка», а так же ключи от квартиры. Вынимая ключи, Миша случайно выронил ...
Определение вероятности

Определение вероятности

При классическом определении вероятность события определяется равенством Р(А) = m/n, где m – число элементарных исходов испытания, благоприятствующих ...
Классическое определение вероятности

Классическое определение вероятности

Тема: Классическое определение вероятности Цель: -создать условия для осознания и осмысления блока новой учебной информации. Задачи: -Способствовать ...
Классическое определение вероятности

Классическое определение вероятности

Цель урока: Выработать умение решать задачи на определение классической вероятности с использованием основных формул комбинаторики. Оборудование: ...
Задачи по вероятности

Задачи по вероятности

Номера задач № 1104 № 1105 № 1106 № 1107 № 1108 № 1109 № 1110 № 1111 № 1112 № 1113 № 1114 выход. В колоде 36 карт, из них наугад вынимают одну карту. ...
Теория бесконечных множеств

Теория бесконечных множеств

Теорема 2. Отношение равномощности есть отношение эквивалентности. Доказательство. Необходимо проверить три условия: рефлексивность, симметричность, ...
Основные понятия теории вероятности

Основные понятия теории вероятности

Теория вероятностей. Введение. Основные комбинаторные объекты. Элементы теории вероятности. Задачи в которых производится подсчет всех возможных комбинаций ...
Теория вероятностей в нашей жизни

Теория вероятностей в нашей жизни

Достоверные, случайные и невозможные события. Достоверное событие – событие, которое в данном опыте обязательно наступит. Случайное событие – событие, ...

Конспекты

Статистика, комбинаторика и теория вероятности

Статистика, комбинаторика и теория вероятности

Урок по теме « Статистика, комбинаторика и теория вероятности». . Цель :. . - Систематизировать знания и умения по статистике, комбинаторике, ...
Урок в 9 классе. Статистика, теория вероятности и их прикладное применение

Урок в 9 классе. Статистика, теория вероятности и их прикладное применение

Урок по математике в 9 классе. Статистика, теория вероятностей и их прикладное применение. . . Автор: учитель математики. МОУ СОШ№ ...
Элементы теории вероятности и математической статистики

Элементы теории вероятности и математической статистики

Управление образования г.Астаны. ИПК и ПК СО. ГУ «Средняя школа № 36». Урок алгебры в 9 классе по теме: «Элементы теории вероятности ...
Элементы теории вероятности в ГИА

Элементы теории вероятности в ГИА

13 апреля 2011г. Урок алгебры в 9 классе по теме:. . «Элементы теории вероятности в ГИА». Цели:. - Научиться анализировать и решать задачи ...
Элементы математической статистики и теории вероятности

Элементы математической статистики и теории вероятности

Тема урока:.  Элементы математической статистики и теории вероятности. Основные цели и задачи урока:.  Повторить основные понятия изучаемого предмета: ...
Элементы комбинаторики, статистики и теории вероятности

Элементы комбинаторики, статистики и теории вероятности

Урок-соревнование. по разделу. «Решение задач по теме «Элементы комбинаторики, статистики и теории вероятности». г.Новороссийск, ...
Теория вероятностей и комбинаторика в заданиях ЕГЭ

Теория вероятностей и комбинаторика в заданиях ЕГЭ

ШЕВЕЛЕВА НАДЕЖДА. МИХАЙЛОВНА. МОУ «Ягельная СОШ» Надымского района. Ямало-Ненецкого автономного округа. Учитель математики. ...
Теория вероятностей

Теория вероятностей

МБОУ «СОШ № 143» г. Красноярска,. . учитель математики Князькина Татьяна Викторовна. Теория вероятностей: подготовка к ЕГЭ 2014. Не так ...
Расчёт вероятности случайного события

Расчёт вероятности случайного события

6 класс. Практическая работа № 1. «Расчёт вероятности случайного события». Цель. : научиться рассчитывать вероятность каждого исхода случайного ...
Расчёт вероятности случайного события

Расчёт вероятности случайного события

7 класс. Практическая работа № 1. «Расчёт вероятности случайного события». Цель. : научиться рассчитывать вероятность каждого исхода случайного ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:28 января 2019
Категория:Математика
Содержит:28 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации