Презентация "Двугранный угол" (10 класс) по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18

Презентацию на тему "Двугранный угол" (10 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 18 слайд(ов).

Слайды презентации

ДВУГРАННЫЙ УГОЛ. Учитель математики ГОУ СОШ №10 Еременко М.А.
Слайд 1

ДВУГРАННЫЙ УГОЛ

Учитель математики ГОУ СОШ №10 Еременко М.А.

Основные задачи урока: Ввести понятие двугранного угла и его линейного угла Рассмотреть задачи на применение этих понятий
Слайд 2

Основные задачи урока:

Ввести понятие двугранного угла и его линейного угла Рассмотреть задачи на применение этих понятий

Определение: Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой.
Слайд 3

Определение:

Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой.

Величиной двугранного угла называется величина его линейного угла. AF ⊥ CD BF ⊥ CD AFB-линейный угол двугранного угла ACDВ
Слайд 4

Величиной двугранного угла называется величина его линейного угла.

AF ⊥ CD BF ⊥ CD AFB-линейный угол двугранного угла ACDВ

Докажем, что все линейные углы двугранного угла равны друг другу. Рассмотрим два линейных угла АОВ и А1ОВ1. Лучи ОА и ОА1 лежат в одной грани и перпендикулярны ОО1, поэтому они сонаправлены. Лучи ОВ и ОВ1 также сонаправлены. Следовательно, ∠АОВ=∠А1ОВ1 (как углы с сонаправленными сторонами).
Слайд 5

Докажем, что все линейные углы двугранного угла равны друг другу.

Рассмотрим два линейных угла АОВ и А1ОВ1. Лучи ОА и ОА1 лежат в одной грани и перпендикулярны ОО1, поэтому они сонаправлены. Лучи ОВ и ОВ1 также сонаправлены. Следовательно, ∠АОВ=∠А1ОВ1 (как углы с сонаправленными сторонами).

Примеры двугранных углов:
Слайд 6

Примеры двугранных углов:

Углом между двумя пересекающимися плоскостями называется наименьший из двугранных углов, образованных этими плоскостями.
Слайд 7

Углом между двумя пересекающимися плоскостями называется наименьший из двугранных углов, образованных этими плоскостями.

Задача 1: В кубе A…D1 найдите угол между плоскостями ABC и CDD1. Ответ: 90o.
Слайд 8

Задача 1:

В кубе A…D1 найдите угол между плоскостями ABC и CDD1.

Ответ: 90o.

Задача 2: В кубе A…D1 найдите угол между плоскостями ABC и CDA1. Ответ: 45o.
Слайд 9

Задача 2:

В кубе A…D1 найдите угол между плоскостями ABC и CDA1.

Ответ: 45o.

Задача 3: В кубе A…D1 найдите угол между плоскостями ABC и BDD1.
Слайд 10

Задача 3:

В кубе A…D1 найдите угол между плоскостями ABC и BDD1.

Задача 4: В кубе A…D1 найдите угол между плоскостями ACC1 и BDD1.
Слайд 11

Задача 4:

В кубе A…D1 найдите угол между плоскостями ACC1 и BDD1.

Задача 5: В кубе A…D1 найдите угол между плоскостями BC1D и BA1D. Решение: Пусть О – середина ВD. A1OC1 – линейный угол двугранного угла А1ВDС1.
Слайд 12

Задача 5:

В кубе A…D1 найдите угол между плоскостями BC1D и BA1D.

Решение: Пусть О – середина ВD. A1OC1 – линейный угол двугранного угла А1ВDС1.

Задача 6: В тетраэдре DABC все ребра равны, точка М – середина ребра АС. Докажите, что ∠DMB – линейный угол двугранного угла BACD.
Слайд 13

Задача 6:

В тетраэдре DABC все ребра равны, точка М – середина ребра АС. Докажите, что ∠DMB – линейный угол двугранного угла BACD.

Решение: Треугольники ABC и ADC правильные, поэтому, BM⊥AC и DM⊥AC и, следовательно, ∠DMB является линейным углом двугранного угла DACB.
Слайд 14

Решение:

Треугольники ABC и ADC правильные, поэтому, BM⊥AC и DM⊥AC и, следовательно, ∠DMB является линейным углом двугранного угла DACB.

Задача 7: Из вершины В треугольника АВС, сторона АС которого лежит в плоскости α, проведен к этой плоскости перпендикуляр ВВ1. Найдите расстояние от точки В до прямой АС и до плоскости α, если АВ=2, ∠ВАС=1500 и двугранный угол ВАСВ1 равен 450.
Слайд 15

Задача 7:

Из вершины В треугольника АВС, сторона АС которого лежит в плоскости α, проведен к этой плоскости перпендикуляр ВВ1. Найдите расстояние от точки В до прямой АС и до плоскости α, если АВ=2, ∠ВАС=1500 и двугранный угол ВАСВ1 равен 450.

АВС – тупоугольный треугольник с тупым углом А, поэтому основание высоты ВК лежит на продолжении стороны АС. ВК – расстояние от точки В до АС. ВВ1 – расстояние от точки В до плоскости α
Слайд 16

АВС – тупоугольный треугольник с тупым углом А, поэтому основание высоты ВК лежит на продолжении стороны АС. ВК – расстояние от точки В до АС. ВВ1 – расстояние от точки В до плоскости α

2) Так как АС⊥ВК, то АС⊥КВ1 (по теореме , обратной теореме о трех перпендикулярах). Следовательно, ∠ВКВ1 – линейный угол двугранного угла ВАСВ1 и ∠ВКВ1=450. 3) ∆ВАК: ∠А=300, ВК=ВА·sin300, ВК =1. ∆ВКВ1: ВВ1=ВК·sin450, ВВ1=
Слайд 17

2) Так как АС⊥ВК, то АС⊥КВ1 (по теореме , обратной теореме о трех перпендикулярах). Следовательно, ∠ВКВ1 – линейный угол двугранного угла ВАСВ1 и ∠ВКВ1=450. 3) ∆ВАК: ∠А=300, ВК=ВА·sin300, ВК =1. ∆ВКВ1: ВВ1=ВК·sin450, ВВ1=

Домашнее задание: Параграф 3, п.22, №167, 169, с.57, вопросы 7-10.
Слайд 18

Домашнее задание:

Параграф 3, п.22, №167, 169, с.57, вопросы 7-10.

Список похожих презентаций

Двугранный угол. Угол между плоскостями2

Двугранный угол. Угол между плоскостями2

В тетраэдре ABCD, ребра которого равны 1, найдите угол между плоскостями ABC и BCD. В правильной пирамиде SABCD, все ребра которой равны 1, найдите ...
Двугранный угол

Двугранный угол

Упражнение 1. Какой угол образует ребро двугранного угла с любой прямой, лежащей в плоскости его линейного угла? Ответ: 90о. Упражнение 2. Плоскости ...
Двугранный угол. Угол между плоскостями

Двугранный угол. Угол между плоскостями

Основные понятия. Прямая а разделяет плоскость на две полуплоскости. Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями ...
Двугранный угол

Двугранный угол

Вдохновение есть расположение души к живейшему принятию впечатлений и соображению понятий, следственно, и объяснению оных. Вдохновение нужно в геометрии, ...
Начальные понятия планиметрии. Прямая и отрезок. Луч и угол

Начальные понятия планиметрии. Прямая и отрезок. Луч и угол

Вводная беседа. Геометрия в переводе с греческого «землемерие» («гео»- по-гречески земля, а «метрео» - мерить). Первым, кто начал получать геометрические ...
Луч и угол

Луч и угол

Часть1. РЕШЕНИЕ ЗАДАЧ НА ПОВТОРЕНИЕ:. Дайте определение отрезка Какие понятия в геометрии считаются неопределимыми? Чем отличается теорема от аксиомы? ...
Внешний угол треугольника. Теорема о внешнем угле треугольника

Внешний угол треугольника. Теорема о внешнем угле треугольника

I. Cумма углов треугольника. 1. На доске доказать теорему о сумме углов треугольника: Сумма углов треугольника равна 1800 2. Решить задачу № 749 (чёт ...
Внешний угол треугольника

Внешний угол треугольника

Общий вид внешнего угла. Понятие. Свойство внешнего угла. Внешний угол. Внешний угол треугольника. Угол, смежный с каким–нибудь углом треугольника, ...
Внешний угол треугольника

Внешний угол треугольника

Треугольник (музыкальный инструмент). Жесткость треугольников. Бермудский треугольник. ВНЕШНИЙ УГОЛ ТРЕУГОЛЬНИКА. У треугольника может быть два тупых ...
Внешний угол произвольного треугольника больше каждого внутреннего, не смежного с ним

Внешний угол произвольного треугольника больше каждого внутреннего, не смежного с ним

Теорема 2. В произвольном треугольнике против большей стороны лежит больший угол. Доказательство. Пусть в треугольнике АВС сторона АВ больше стороны ...

Конспекты

Двугранный угол

Двугранный угол

Тема урока: «Двугранный угол». Ф.И.О. учителя:. Банникова Дарья Дмитриевна. Дата проведения:. 26.02.13. Класс:. 10 «Б». . Цели урока:. Ввести ...
Прямой и непрямой угол

Прямой и непрямой угол

Тема: Прямой и непрямой угол. . Цели урока:. *познакомить с прямым и непрямым углом;. . *закреплять вычислительные навыки;. . *развивать ...
Виды углов. Прямой угол

Виды углов. Прямой угол

Автор: Малахова Галина Григорьевна, учитель начальных классов МКОУ СОШ № 17 села Сухая Буйвола, Петровского района, Ставропольского края. . Виды ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 января 2015
Категория:Математика
Классы:
Содержит:18 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации