- Соотношения между сторонами и углами прямоугольного треугольника

Конспект урока «Соотношения между сторонами и углами прямоугольного треугольника» по геометрии

Оноприенко Л.Н.;

учитель математики ШЛ №27

(из опыта работы).


Урок по теме: Соотношения между сторонами и углами прямоугольного треугольника.


Тип урока: Урок решение задач.


Цель урока: Применение знаний, умений и навыков по теме "Соотношения между сторонами и углами прямоугольного треугольника" к решению задач прикладного характера.


Задачи урока:

1) Повторить базовые знания по теме.

Показать их применение к решению прикладных и практических задач.

2) Воспитать: ответственность, активность, инициативу и творческий

подход к делу, дух соревновательности.

3) Развивать: Практические умения и навыки, элементы моделирования

и конструирования, поисково-исследовательскую деятельность,

логическое мышление, вычислительные навыки, геометрическое видение.


Метод: Практический с элементами моделирования и конструирования, частично-поисковой деятельностью.


Средства:

  1. Интерактивная доска.

  2. Тест по теме " Теорема Пифагора" (логические цепочки в задачах на готовых чертежах).

  3. Инструкция по выполнению теста.

  4. Таблицы с задачами на готовых чертежах.

5) Карточки с задачами прикладного и практического характера.

6) Классмейты, таблицы Брадиса.

7) Презентация исторического материала " О значении теоремы Пифагора."

8) Набор инструментов для построения прямого угла.

9) Оценочный лист.


План урока.

1.Организационный момент. Постановка цели урока.

2.Проверка базовых знаний и умений по теме: "Решение прямоугольных треугольников"

а) Ребусы ( на повторение основных понятий )

б) Работа по готовым чертежам.

в) Практическая работа по построению прямого угла.

3. Тест по теме " Теорема Пифагора" ( логические цепочки в задачах на готовых

чертежах.)

4.Решение прикладных и практических задач.

5. Исторический экскурс (о значении теоремы Пифагора )

6. Подведение итогов урока.

Выставление оценок.

Рефлексия.

7. Постановка домашнего задания.



Перед уроком на интерактивной доске демонстрируется слаид-шоу фрагментов красивейших архитектурных сооружений столицы.

Начинается урок. Учитель просит ребят прокомментировать увиденный сюжет и дать ему название. Затем говорит о том, что уже очень многое изучено по треугольнику в том числе по прямоугольному и объявляет конкурс на лучшую презентацию мини-проекта "Астана в геометрических образах".

Главный сюжет - пространственный аналог треугольника: треугольная пирамида в архитектурных сооружениях города Астаны. Срок-1месяц.


Ход урока.

п/п

Содержание учебного материала.

Деятельность учителя и ученика.

1.


Организационный момент. Постановка цели урока.

Тема: Соотношения между сторонами и углами прямоугольного треугольника.

Цель урока: Применение знаний, умений и навыков по теме "Соотношения между сторонами и углами прямоугольного треугольника" к решению задач прикладного и практического характера.

Проверяет готовность класса к уроку, объявляет цель урока.




2.


Проверка базовых знаний и умений по теме: "Решение прямоугольных треугольников"

а) Разгадать ребусы (на повторение основных понятий).

( Приложение 1).

Землемеры древнего Египта для построения прямого угла использовали бечевку, разделенную узлами на двенадцать равных частей. Покажите. как они это делали.

Указание: в углах должны быть узлы.

На интерактивной доске. Фронтальная работа. Параллельно с фронтальной работой группа учащихся из трёх человек выполняет практическую работу по построению прямого угла; затем перед классом демонстрируют результат, делают обоснование, используя обратную теорему Пифагора.


б) работа по готовым чертежам:

1)найдите неизвестные элементы треугольника













( Взаимно обратные задачи; используются пифагоровы тройки).



На интерактивной доске.

Устная фронтальная работа оценивается жетонами.

















2) Решить прямоугольный треугольник


















Подводится итог работы по проверки базовых знаний

Учитель перед началом работы задает вопросы:

  1. Что значит решить прямоугольный треугольник?

  2. Что позволяет решить прямоугольный треугольник?

а) теорема Пифагора

б) значения sin, cos, tg,ctg острых углов прямоугольного треугольника

в) теорема о сумме углов треугольника

3. Определяется ли однозначно треугольник по углам

По оценочному листу

3

Инструкция по выполнению теста:

  1. вычислите неизвестные стороны прямоугольных треугольников на чертежах;

  2. запишите найденные значения в пустые прямоугольники, размещенные на неизвестных сторонах;

  3. сделайте проверку после каждого теста;

  4. результат покажите учителю, или запишите в тетрадь;

Задание 1-4 см. приложения 2



Самооценка по критериям указаным в оценочном листе ( приложение 3)


Логические цепочки в задачах на готовых чертежах (тесты по теме: «Теорема Пифагора»).

Каждой паре учащихся на стол выкладывается инструкция по выполнению теста. (работа в парах)

Каждой паре учащихся дается таблица с комбинацией прямоугольных треугольников и инструкция по выполнению задания. Проверка идет на интерактивной доске, учащиеся вписывают верные ответы в пустые квадратики, параллельно с доской идет самоконтроль и самооценка. Ответ записывается на карточку каждым учеником в виде четверки чисел. Записывается количество верных ответов.





4


Решение прикладных и практических задач.


1 группа: «Геодезисты»

Задача

Какова высота скалы, если она из А видна под углом α = 40°40’, а из пункта Б под углом β = 20°20’. Расстояние между пунктами А и Б равно 90 м. Высота угломерного прибора равна 1,7м.










Ответ: 60,3 м


2 группа: «Инженеры проходчики»

Задача

По уклону пласта проложен трубопровод для откачивания воды с нижнего грунта шахты. Угол падения пласта, образованный поверхностью пласта с горизонтом равен 25°13’. Найдите глубину, с которой откачивают воду, если длина трубопровода равна 1070 м.








3 группа: «Историки - этнографы»

Задача

«На берегу реки рос тополь одинокий.

Вдруг ветра порыв его ствол надломал.

Бедный тополь упал. И угол прямой

С течением реки его угол составлял.

Запомни теперь, что в том месте река

В четыре лишь фута была широка.

Верхушка склонилась у края реки.

Осталось три фута всего от ствола,

Прошу тебя, скоро теперь мне скажи:

У тополя как велика высота?»



4 группа: «Метеорологи»

Задача: Климат

известно, что облака верхнего яруса (выше 6 км) состоят из ледяных кристаллов, облака среднего яруса (6 – 2 км) скапливаются из мельчайших капель и кристаллов льда. А вот облака нижнего яруса (ниже 2 км) состоят преимущественно из водяных капель. Именно они являются основными «поставщиками» дождей. Поэтому для метеорологов так важно уметь определять высоту облаков.

Задача: придумайте способ нахождения высоты нижней границы облаков.


Рисунки проецируются на интерактивную доску.

Класс разбит на четыре микрогруппы: каждая группа ребят – представители одной из «Профессии» (геодезисты, инженеры проходчики, географы – метеорологи, этнографы-историки).

Каждой группе в зависимости от их профиля дается прикладная или практическая задача, решить которую необходимо за 8 минут.

Ученики:

  1. переводят задачу на математический язык (моделируют ситуацию, изображают чертеж);

  2. решают задачу в рамках полученной математической модели;

  3. переводят полученный результат на первоначальный язык задачи.

Работа выполняется каждым учеником группы в тетради.

Учитель:

направляет работу учеников.


Защита: от каждой группы представитель объясняет решение, дает обоснование. Группа оценивается учителем и учениками, результаты выставляются в оценочный лист


5

Информационно-обобщающий. О значении теоремы Пифагора:

Оказывается, за долго до Пифагора она была известна египтянам, вавилонянам, китайцам и индийцам. Индийцы использовали ее для построения алтарей, которые по священному предписанию должны иметь геометрическую форму, ориентированную относительно четырех сторон горизонта. Доказательство самого Пифагора до нас не дошло. В настоящее время имеется более ста различных доказательств этой теоремы. Значение теоремы состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии. Доказательство теоремы учащиеся средних веков считали очень трудным и называли его «Ослиный мост» или «Бегство убогих», так как некоторые «убогие» ученики, не имевшие серьезной математической подготовки, «бежали» от геометрии. Ученики рисовали шаржи на теорему Пифагора. Существует легенда о том, что в честь своего открытия Пифагор принес в жертву быка или, как рассказывают другие, сто быков. Поэты сочиняли стихи об этой теореме. Например, А. Шамиссо писал:

Прибудет вечной истина, как скоро

Ее познает слабый человек!

И ныне теорема Пифагора, верна

Как и его далекий век!

Двое учащихся заранее готовит сообщение. Теорема Пифагора – одна из главных теорем геометрии.


Рассказ учащихся сопровождается показом слайдов ( см. приложение 1-5













Учитель благодарит учеников за содержательную информацию.



6

Подведение итогов урока

а) какие знания нам понадобились при решении задач данного типа?

б) о чем надо помнить, применяя теорему Пифагора?

в) достигли ли мы цели урока?

Самооценка по основным видам работ (см. оценочный лист







Учитель дает общую оценку работе на уроке.

Выставляет отметки

Оценочный лист

7

Постановка домашнего задания

  1. Конкурс на лучший мини-проект на тему: «Астана в геометрических образах» презентация в программе Power Point. (Срок выполнения 1 месяц)

  2. Задачи приладного характера:


Задача 1: С вертолета, летящего горизонтально и прямолинейно на высоте Н, определены углы α и , под которыми видны голова и хвост колонны войск противника, движущейся по прямолинейному участку маршрута (рис. 8). Определить глубину колонны, если ее маршрут находится в одной вертикальной плоскости с траекторией вертолета (Н= 950м,

α =81°, =22°).


Задача 2: В планке требуется сделать паз, размеры сечения которого даны на рисунке. Вычислить углы наклона боковых граней паза, зная, что они равны между собой. (рис.)

Задача 3: Одна из древних задач индусов.

Над озером тихим,

С полфута размером высился лотоса цвет.

Он роз одиноко. И ветер порывом

Отнес его в сторону. Нет

Боле цветка над водой.

Нашел же рыбак его ранней весной

В двух футах от места, где рос.

Итак, предложу я вопросу:

Как озера вода здесь глубока

Урок завершается вручением каждому ученику небольшого сюрприза: открытка с одним из пожеланий:

  1. научиться преодолевать трудности.

  2. справляться с любыми задачами.

  3. получить за III четверть 5 по математике

  4. выполнять все домашние задания только на 5.

  5. стать отличником по всем предметам.

  6. быстрее всех решать самые трудные задачи.

  7. побеждать на олимпиадах.

  8. быть творческой личностью.

  9. развивать исследовательские навыки.

  10. принять участие в конкурсе гениальных проектов.


Учитель объявляет конкурс на лучшую презентацию мини-проекта (пространственные аналоги треугольника).



Предложенные задачи прикладного характера должен решить каждый ученик, оформив решение в тетради.




Учитель демонстрирует условие каждой задачи на интерактивной доске.




Каждый ученик получает карточки с домашним зданием





















Открытки с сюрпризом вручаются каждому ученику.



















































Приложение 2

Найдите неизвестные стороны треугольников.





Приложение 3


Ф.И. ученика: __________________________________


Виды работ

Оценка 1 задания

в баллах

Оценочный лист

Итого


Ребусы


0,1 б

1

2

3

4

5

6

7

8

9

10












Устная фронтальная работа


1

2

3





Решение прямоугольных треугольников


1

2

3

4

5







Тест (логические цепочки)


1

2

3

4






Задачи прикладного характера (практическая работа)

Всего за 4 вида работ

15б

1

2

3

4


Выполнение рисунка (черт.)

Перевод на математи-ческий язык

Решение задачи в рамках полученной модели

Перевод результата на первоначальный язык задачи

3 б





Критерии оценки

1-11 баллов (до 44%)- оценка «2» (неудовлетворительно)

12-17 баллов (45 – 68%) – оценка «3» (удовлетворительно)

18-21 балла (69 – 84%) – оценка «4» (хорошо)

22-25 баллов (85 – 100%) – оценка «5» (отлично)






Здесь представлен конспект к уроку на тему «Соотношения между сторонами и углами прямоугольного треугольника», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Геометрия Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Соотношения между сторонами и углами прямоугольного треугольника

Соотношения между сторонами и углами прямоугольного треугольника

Конспект урока на тему «Соотношения между сторонами и углами прямоугольного треугольника». 1. Оргмомент. Слайд 1. Здравствуйте. Поднимите ...
Соотношения между сторонами и углами прямоугольного треугольника

Соотношения между сторонами и углами прямоугольного треугольника

МОУ «Лицей №31». Методическая разработка урока. по геометрии в VIII. классе. по проблеме: «Личностно-ориентированный подход ...
Соотношения между сторонами и углами треугольника

Соотношения между сторонами и углами треугольника

Общеобразовательная школа I. -III. ступеней №31. Симферопольского городского совета. Республики Крым. Обобщающий урок. по теме. «Соотношения ...
Теорема о соотношениях между сторонами и углами треугольника

Теорема о соотношениях между сторонами и углами треугольника

Урок геометрии в 7 классе. Тема:. Теорема о соотношениях между сторонами и углами треугольника. Тип урока:. объяснение нового материала. Цели ...
Соотношение между сторонами и углами прямоугольного треугольника

Соотношение между сторонами и углами прямоугольного треугольника

Урок по геометрии 8 классе. . «Соотношение между сторонами и углами прямоугольного треугольника». Цели урока:. . образовательная. :. . . ...
Соотношения между сторонами и углами в прямоугольном треугольнике

Соотношения между сторонами и углами в прямоугольном треугольнике

ГБООУ Медновская санаторная школа-интернат. Конспект урока. . по математике (геометрия). в 8 классе. «Соотношения между сторонами и углами. ...
Соотношение между сторонами и углами треугольника

Соотношение между сторонами и углами треугольника

Фрагмент урока по теме: «Соотношение между сторонами и углами треугольника» (9 класс, учебник «Геометрия 7 – 9», Л. С. Атанасян). Автор:. учитель ...
Нахождение площади прямоугольного треугольника

Нахождение площади прямоугольного треугольника

Урок геометрии 3 класс (с презентацией). Тема:. Нахождение площади прямоугольного треугольника. Цель:. формирование навыка построения геометрических ...
Высота прямоугольного треугольника

Высота прямоугольного треугольника

ДОБРОВА НАТАЛИЯ МАРАТОВНАучитель математики. ГБОУ СОШ № 44. Санкт-Петербург. «ВЫСОТА ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА». (среднее арифметическое ...
Площадь прямоугольного треугольника

Площадь прямоугольного треугольника

Конспект урока по математике. Тема: «Площадь прямоугольного треугольника». Тип урока:. изучение нового материала. Цель урока:. создать условия ...
Площадь прямоугольного треугольника

Площадь прямоугольного треугольника

Муниципальное общеобразовательное учреждение гимназия № 10. Урок по математике УМК “Школа 2100” 4 класс. «Площадь прямоугольного треугольника». ...
Сумма углов треугольника

Сумма углов треугольника

Муниципальное казенное общеобразовательное. . учреждение лицей №11. Открытый урок в 7 классе по теме:. Сумма углов треугольника. Подготовила ...
Сумма углов треугольника

Сумма углов треугольника

План – конспект урока. Сумма углов треугольника. . . ФИО (полностью). . Язвенко Елена Васильевна. . . . . Место работы. ...
Сумма углов треугольника

Сумма углов треугольника

Методический портал учителя «Методсовет» - http. ://. metodsovet. . su. . Автор: Морина Светлана Алексеевна. Учитель математики МБОУ СОШ ...
Средняя линия треугольника

Средняя линия треугольника

Обрывко Ирина Михайловна. Учитель математики. МБОУ лицей № 15 города Ставрополя Ставропольского края. Урок геометрии по теме: « Средняя линия ...
Объем прямоугольного параллелепипеда

Объем прямоугольного параллелепипеда

Предмет — математика. . Класс: 5. Тема урока:.  Объем прямоугольного параллелепипеда. Главная дидактическая цель:. закрепление навыков. ...
Теорема о сумме углов треугольника

Теорема о сумме углов треугольника

Урок геометрии в 7 классе. Тема: «Теорема о сумме углов треугольника». Цели урока. : повторить и закрепить изученный материал: задачи на построение; ...
Сумма углов треугольника

Сумма углов треугольника

КГУ «Первомайский комплекс «Общеобразовательная средняя школа-детский сад имени Д. М. Карбышева» отдела образования Шемонаихинского района». ...
Площадь треугольника

Площадь треугольника

ПЛАН-КОНСПЕКТ УРОКА. Площадь треугольника__________________________________________. (Тема урока). . ФИО (полностью). . Ефимова Светлана ...
Площадь треугольника

Площадь треугольника

Разработка урока по теме: «Площадь треугольника», 9 класс. . учителя математики МОУ СОШ №1. п. Селижарово Андреевой Т.В. Разработка урока по ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:19 мая 2016
Категория:Геометрия
Поделись с друзьями:
Скачать конспект