- Методы решения систем уравнений

Конспект урока «Методы решения систем уравнений» по алгебре для 9 класса

МУНИЦИПАЛЬНОЕ КАЗЕННОЕ

ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №5» г.Михайловска

Методическое объединение учителей математики, физики, информатики

Математика









План–конспект урока алгебры в 9 классе

Тема: Методы решения систем уравнений.







Автор:

Воеводина Алла Анатольевна

учитель математики







г.Михайловск

2014-2015 гг

Тема: Методы решения систем уравнений.

Тип урока: урок закрепления и систематизации знаний учащихся.

Цели урока:

  • закрепить навыки решения систем уравнений второй степени различными способами: графическим, способом подстановки, способом сложения;

  • формирование представлений о структуре заданий по теме: «Системы уравнений» в заданиях ГИА, а также их уровне сложности;

  • создать ситуацию успешности каждого учащегося, воспитать чувство ответственности, самостоятельности;

  • развить внимание, память, логическое мышление.

Оборудование: карточки для индивидуальной работы, сигнальные карточки, оценочный лист, тесты, проектор.

Формы организации: фронтальная, индивидуальная, парная.





















Ход урока

  1. Орг.момент.

Мотивация учения.

Французский писатель Анатоль Франс заметил “Чтобы переварить знания надо поглощать их с аппетитом”, последуем совету писателя, будем на уроке активны, внимательны, будем “поглощать” знания с большим желанием. Умение решать системы уравнений позволяет существенно расширить класс текстовых задач и перед нами стоит задача: повторить способы решения систем уравнений, проверить свое умение самостоятельно применять полученные знания и дать им самооценку.

{- Записать в тетрадь число и тему урока}

2.Актуализация знаний и умений

Фронтальный опрос: (вопросы на слайде)

а) Что является решением уравнения с двумя переменными?

б) Что значит решить уравнение с двумя переменными?

в) Что называется решением системы уравнений с двумя переменными?

г) Какие системы называются равносильными?

д) Какие способы решения систем уравнений вы знаете?

е) Каким способом удобнее всего решить данный пример? (примеры на слайде)

Одновременно с фронтальным опросом три ученика на доске решают систему уравнений из домашней работы разными методами: графическим, методом подстановки, методом сложения, и рассказывают алгоритм решения. Проверяем вместе графический способ (на слайде)

- Возьмите оценочные листы, поставьте себе оценку за первый этап работы.


3. Проверка умений применять на практике полученные знания.

1) Графический способ решения.

III ряд работает в парах.

- Возьмите карточку № 1 . На ней изображены графики некоторых уравнений, а справа записаны системы уравнений. Но в этой системе одного уравнения не хватает. Ваша задача заключается в том, чтобы:

1. в систему вписать уравнение линии, изображенной на чертеже

2. дополнить чертеж графиком, уравнение которого уже записано в системе,

3. найти решение данной системы графически.

Время работы 10 минут. Проверить решения, ответы на слайде.

I, II ряды работают в тетради.

- Выяснить, сколько решений имеет система уравнений?

(Устно) а) б)

(На доске) в) г)

Ученики записывают решение в тетрадь, один ученик – на доске. Ответы проверяются при помощи слайда.

После выполнения задания, напомнить ученикам о выставлении самооценки в оценочный лист.

- Итак, у учеников, работающих в парах, было________________________________ Какое слово вы получили? Диофант. Чем же он так знаменит? Кто из вас слышал об этом ученом? (Далее следует рассказ ученика).

Диофант Александрийский – он жил в 3 веке нашей эры. Из работ Диофанта самой важной является “Арифметика”, из 13 книг которой только 6 сохранились до наших дней. В сохранившихся книгах Диофанта содержится 189 задач с решениями. В пяти книгах содержатся методы решения неопределенных уравнений. Это и составляет основной вклад Диофанта в математику. Что же это за уравнения?

Рассмотрим задачу на старинный сюжет. ( Текст задачи на слайде). В клетке сидят кролики и фазаны, всего у них 18 ног. Узнать, сколько в клетке тех и других. Как бы вы предложили решить эту задачу? (Обсуждение с классом.) Необходимо ввести две переменные: х – число кроликов, у – число фазанов, тогда получим уравнение 4х + 2у = 18 или 2х + у = 9. Выразим у через х: у = 9 – 2х и далее воспользуемся методом перебора: х = 1, у = 7; х = 2, у = 5; х = 3, у = 3; х = 4, у = 1. Т.о. задача имеет 4 решения.

Подобные уравнения встречаются часто, они-то и называются неопределенными. Особенность их состоит в том, что уравнение содержит две или более переменных и требуется найти все целые или натуральные их решения. Такими уравнениями и занимался Диофант. Он изобрел большое число способов решения подобных уравнений, поэтому их часто называют диофантовыми уравнениями.

2). Самостоятельная работа.

- Мы вспомнили некоторые методы решения систем уравнений. Давайте проведем небольшую самостоятельную работу. Сейчас на экране вы видите тест. С подобным тестом вы встречались при решении вариантов диагностической работы. Необходимо выбрать нужный вариант ответа. Решения и ответы записываем в свою тетрадь, сверяемся со слайдом и ставим себе балл по результатам каждой системы.

  1. Исследование систем уравнений.

На данном этапе урока нам предстоит с вами побывать в роли исследователей. Перед нами стоит задача: выяснить количество решений системы двух уравнений с двумя переменными в зависимости от параметра. Задания такого типа у нас встречаются во второй части экзаменационной работы

Рассмотрим систему: ( на слайде)

- Выясним, при каких значениях а система не имеет решений, имеет одно решение, более одного решения. Рассмотрим графический способ решения.

Ученики предлагают алгоритм решения данной системы.

_______________________________________________________________________________________________________________________________________________________________________________________________________________________

Учитель показывает ход решения этой системы на слайде.

- А теперь попробуйте провести аналогичную исследовательскую работу самостоятельно, выбрав любую из понравившихся вам систем.

(Системы записаны на слайде):

Возьмите свои оценочные листы, поставьте себе оценку за работу на четвертом этапе урока.

ИТОГ урока.

Итак, сегодня мы с вами закрепили знания по теме «Решение систем уравнений с двумя переменными” различными методами. Еще раз повторим, какими? ______________________________________________________________________

Спасибо за урок, до новых встреч!

Здесь представлен конспект к уроку на тему «Методы решения систем уравнений», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Алгебра (9 класс). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Методы решения систем двух линейных уравнений с двумя переменными

Методы решения систем двух линейных уравнений с двумя переменными

План- конспект урока алгебры в 7 классе по теме: «Методы решения систем двух линейных уравнений с двумя переменными». Орг. момент, сообщение ...
Методы решения уравнений и неравенств, содержащих обратные тригонометрические функции

Методы решения уравнений и неравенств, содержащих обратные тригонометрические функции

Конспект урока по алгебре и началам анализа по теме. «Методы решения уравнений и неравенств, содержащих обратные тригонометрические функции». . ...
Нестандартные методы решения уравнений и неравенств. Использование области определения функций

Нестандартные методы решения уравнений и неравенств. Использование области определения функций

Тема урока: Нестандартные методы решения уравнений и неравенств. Использование области определения функций. . ФИО (полностью). . Кривошеин ...
Методы решения тригонометрических уравнений

Методы решения тригонометрических уравнений

Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа № 5 с углубленным изучением отдельных предметов. городского ...
Применение метода подстановки для решения систем уравнений

Применение метода подстановки для решения систем уравнений

Муниципальное бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа города Пионерский». Калининградской области. ...
Виды уравнений. Методы решения уравнений

Виды уравнений. Методы решения уравнений

ГАОУ НПО Профессиональный лицей № 59. Оренбургская область, Красногвардейский район, с. Плешаново. Виды уравнений. Методы решения уравнений. ...
Использование метода подстановки для решения систем уравнений

Использование метода подстановки для решения систем уравнений

Муниципальное бюджетное общеобразовательное учреждение. «Тимковская основная общеобразовательная школа». Использование . метода . подстановки ...
Системы двух линейных уравнений с двумя неизвестными. Графический метод решения линейных уравнений

Системы двух линейных уравнений с двумя неизвестными. Графический метод решения линейных уравнений

Урок алгебры в 7 классе на тему: "Системы двух линейных уравнений с двумя неизвестными. Графический метод решения линейных уравнений". Цели урока:. ...
Графический способ решения систем уравнений

Графический способ решения систем уравнений

Тема урока:. . Графический способ решения систем уравнений. Тип урока. : Урок изучения нового материала. Цели урока. :. Образовательные. ...
Графический способ решения система уравнений с двумя переменными

Графический способ решения система уравнений с двумя переменными

Урок алгебры в10 классе по теме: «Графический способ решения система уравнений с двумя переменными». Цель урока:. добиться усвоения учащимися смысла ...
Графический способ решения систем уравнений

Графический способ решения систем уравнений

2. . . Дата: ________________. Класс: 9. Предмет: алгебра. Тема: «Графический способ решения систем уравнений». Цели:. Использовать графики ...
Графический способ решения систем уравнений

Графический способ решения систем уравнений

Открытый бинарный урок (алгебра и информатика) по теме:. Графический способ решения систем уравнений. . (9-й класс). Учебник: Алгебра, 9 класс, ...
Графический метод решения систем уравнений с двумя переменными

Графический метод решения систем уравнений с двумя переменными

Общеобразовательная школа. I. -. III. ступеней №5. Симферопольского городского совета Республики Крым. Конспект урока по алгебре. ...
Методы решения уравнений и неравенств

Методы решения уравнений и неравенств

Тема: «Методы решения уравнений и неравенств». 9 класс. ГБОУ СОШ №1968. Учитель математики: Осина И.В. Г.Москва. Тип урока. :. Урок обобщения ...
Общие методы решения тригонометрических уравнений

Общие методы решения тригонометрических уравнений

. Муниципальное общеобразовательное учреждение. Малоибряйкинская основная общеобразовательная школа. Похвистневского района Самарской области. ...
Методы решения тригонометрических уравнений

Методы решения тригонометрических уравнений

МОУ «Ангоянская средняя общеобразовательная школа». Открытый урок. по алгебре и началам анализа. 10 класс. Тема:. Методы решения тригонометрических ...
Методы решения показательных и логарифмических уравнений и неравенств

Методы решения показательных и логарифмических уравнений и неравенств

Тема урока: «Методы решения показательных и логарифмических уравнений и неравенств». Тип урока:. . Цели урока: урок обобщения и систематизации ...
Методы решения показательных уравнений

Методы решения показательных уравнений

План-конспект урока обобщающего повторения. . «Методы решения показательных уравнений». Цели урока:. Обобщение знаний и умений учащихся по ...
Методы решения логарифмических уравнений

Методы решения логарифмических уравнений

Муниципальное бюджетное общеобразовательное учреждение. «Общеобразовательная Хетовская средняя школа». Виноградовского района Архангельской области. ...
Методы решения квадратных уравнений

Методы решения квадратных уравнений

Организационная информация. . . Тема урока. . Квадратные уравнения: методы решения. . . Предмет. . Алгебра. . . Класс. ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:6 июля 2016
Категория:Алгебра
Классы:
Поделись с друзьями:
Скачать конспект