- Непредельные углеводороды

Презентация "Непредельные углеводороды" по окружающему миру – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43
Слайд 44
Слайд 45
Слайд 46
Слайд 47

Презентацию на тему "Непредельные углеводороды" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Окружающий мир. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 47 слайд(ов).

Слайды презентации

Непредельные углеводороды. Учитель химии А. М. Галенко МОУ СОШ № 67 Волгограда.
Слайд 1

Непредельные углеводороды.

Учитель химии А. М. Галенко МОУ СОШ № 67 Волгограда.

Непредельные, или ненасыщенные, УВ содержат кратные углерод- углеродные связи (>C=C
Слайд 2

Непредельные, или ненасыщенные, УВ содержат кратные углерод- углеродные связи (>C=C

Непредельные углеводороды: Алкены. Алкадиены. Алкины.
Слайд 3

Непредельные углеводороды:

Алкены. Алкадиены. Алкины.

Алкены. Определение алкенов. Изомерия Номенклатура. Химические свойства. Получение Применение. Физические свойства. Назад
Слайд 4

Алкены

Определение алкенов

Изомерия Номенклатура

Химические свойства

Получение Применение

Физические свойства

Назад

Алкены ( олефины, этиленовые УВ) CnH2n, n>2. Алкены – это УВ, в молекулах которых два атома углерода находятся в состоянии Sp²-гибридизации и связаны друг с другом двойной связью. Длина связи С=С в алкенах равна 0,134 нм. Назад
Слайд 5

Алкены ( олефины, этиленовые УВ) CnH2n, n>2

Алкены – это УВ, в молекулах которых два атома углерода находятся в состоянии Sp²-гибридизации и связаны друг с другом двойной связью. Длина связи С=С в алкенах равна 0,134 нм. Назад

Для алкенов возможны 4 типа изомерии: Изомерия углеродной цепи Изомерия положения двойной связи Цис,- транс- изомерия Классов соединений (циклоалканы) Назад
Слайд 6

Для алкенов возможны 4 типа изомерии: Изомерия углеродной цепи Изомерия положения двойной связи Цис,- транс- изомерия Классов соединений (циклоалканы) Назад

CnH2n ан -- ен или илен В качестве главной выбирают цепь, включающую двойную связь, даже если она не самая длинная. Нумерация с того конца, к которому ближе двойная связь Положение = связи указывают в конце, номером атома углерода, после которого она находится. В начале названия – положение боковых
Слайд 7

CnH2n ан -- ен или илен В качестве главной выбирают цепь, включающую двойную связь, даже если она не самая длинная. Нумерация с того конца, к которому ближе двойная связь Положение = связи указывают в конце, номером атома углерода, после которого она находится. В начале названия – положение боковых цепей. Исключение: пентан - пентен или амилен Радикалы СН2=СН- винил СН2=СН-СН2- аллил Назад

С2-С4 газы, С5-С16 жидкости, С>19 твердые, рTкип.(разв.) Ткип.(цис)>Tкип.(транс) Назад
Слайд 8

С2-С4 газы, С5-С16 жидкости, С>19 твердые, рTкип.(разв.) Ткип.(цис)>Tкип.(транс) Назад

Активны из-за наличия непрочной π- связи Характерны реакции присоединения Гидрирование( присоединение водорода) СН3-СН=СН2 +Н2→ CH3-CH2-CH3(кат.Ni) пропен пропан Галогенирование( +Hal2 ) СН3-СН=СН2 +Br2 → CH3-CHBr-CH2Br пропен 1,2- дибромпропан качественная реакция Гидрогалогенирование( +HHal) CH2=C
Слайд 9

Активны из-за наличия непрочной π- связи Характерны реакции присоединения Гидрирование( присоединение водорода) СН3-СН=СН2 +Н2→ CH3-CH2-CH3(кат.Ni) пропен пропан Галогенирование( +Hal2 ) СН3-СН=СН2 +Br2 → CH3-CHBr-CH2Br пропен 1,2- дибромпропан качественная реакция Гидрогалогенирование( +HHal) CH2=CH2 + HCl→ CH3 – CH2Cl этен хлорэтан

Присоединение галогенводородов к несимметричным алкенам происходит по правилу В.В. Марковникова Правило Марковникова !!! При присоединении полярных молекул (НHal, H2O) к несимметричным алкенам атом водорода присоединяется к атому углерода у кратной связи, связанному с большим числом атомов водорода.
Слайд 10

Присоединение галогенводородов к несимметричным алкенам происходит по правилу В.В. Марковникова Правило Марковникова !!! При присоединении полярных молекул (НHal, H2O) к несимметричным алкенам атом водорода присоединяется к атому углерода у кратной связи, связанному с большим числом атомов водорода. CH3-CH=CH2 +HBr →CH3-CHBr-CH3 пропен 2-бромпропан Гидратация (+Н2О) происходит по правилу Марковникова СН2=СН2 +Н2О →СН3-СН2ОН (в кислой среде при нагревании) этанол (первичный спирт) СН2=СН-СН2-СН3+Н2О→СН3-СНОН-СН2-СН3 бутен-1 бутанол-2 ( вторичный спирт ) II. Реакция окисления Горение: а) полное ( избыток О2) С2Н4 +3О2 → 2СО2 +2Н2О

б) неполное( недостаток кислорода) C2H4 +2O2→2CO + 2H2O C2H4 + O2→2C +2H2O в)под действием окислителей типа KMnO4, K2Cr2O7 CH2=CH2 + ( O ) + H2O----- CH2 – CH2 l l OH OH !!! качественная реакция алкилирование (присоединение алканов) кат.AlCl3, AlBr3, HF, H2SO4 CH2=CH2+ CH3-CH2-CH3→-CH3-CH2-CH2-CH2-C
Слайд 11

б) неполное( недостаток кислорода) C2H4 +2O2→2CO + 2H2O C2H4 + O2→2C +2H2O в)под действием окислителей типа KMnO4, K2Cr2O7 CH2=CH2 + ( O ) + H2O----- CH2 – CH2 l l OH OH !!! качественная реакция алкилирование (присоединение алканов) кат.AlCl3, AlBr3, HF, H2SO4 CH2=CH2+ CH3-CH2-CH3→-CH3-CH2-CH2-CH2-CH3 и СH3-CH2-CH-CH3 l пентан CH3 2-метилбутан

III.Реакции полимеризации. Процесс полимеризации алкенов открыт А.М.Бутлеровым. Полимеризацией называется процесс соединения одинаковых молекул (мономеров), протекающий за счет разрыва кратных связей, с образованием высокомолекулярного соединения (полимера) Условия t, P, kat. n CH2=CH2 → (-CH2-CH2-)
Слайд 12

III.Реакции полимеризации.

Процесс полимеризации алкенов открыт А.М.Бутлеровым. Полимеризацией называется процесс соединения одинаковых молекул (мономеров), протекающий за счет разрыва кратных связей, с образованием высокомолекулярного соединения (полимера) Условия t, P, kat. n CH2=CH2 → (-CH2-CH2-) n мономер (этилен) полимер ( полиэтилен) Назад

Исследования выдающегося русского химика Владимира Васильевича Марковникова явились блестящим подтверждением теории химического строения его учителя, А.М. Бутлерова. Результаты этих исследований послужили основой учения о взаимном влиянии атомов как одного из главных положений теории химического стр
Слайд 13

Исследования выдающегося русского химика Владимира Васильевича Марковникова явились блестящим подтверждением теории химического строения его учителя, А.М. Бутлерова. Результаты этих исследований послужили основой учения о взаимном влиянии атомов как одного из главных положений теории химического строения. В 1869 г. В.В. Марковников защитил докторскую диссертацию на тему « Материалы по вопросу о взаимном влиянии атомов в химических соединениях». !!!

Реакция Вагнера. ! Реакцию окисления олефинов водным раствором перманганата калия открыл в 1888 г. русский химик с немецкой фамилией – Егор Егорович Вагнер. С помощью этой качественной реакции Е.Е. Вагнер доказал непредельный характер некоторых природных соединений: терпенов, лимонена, скипидара. С
Слайд 14

Реакция Вагнера. !

Реакцию окисления олефинов водным раствором перманганата калия открыл в 1888 г. русский химик с немецкой фамилией – Егор Егорович Вагнер. С помощью этой качественной реакции Е.Е. Вагнер доказал непредельный характер некоторых природных соединений: терпенов, лимонена, скипидара. С тех пор этот процесс носит имя ученого – реакция Вагнера.

Получение алкенов. 1)Крекинг нефтепродуктов С16Н34 --- С8Н18 + С8Н16( t ) 2) Дегидрирование алканов ( де + гидр + ирование= удалять +водород + + действие) CnH2n+2 → CnH2n + H2 ( t, kat.) Отщепление водорода. 3) Гидрирование алкинов CnH2n-2+ H2 → CnH2n ( kat. Ni, Pt ) 4)Дегидратация спиртов (t, kat:H
Слайд 15

Получение алкенов.

1)Крекинг нефтепродуктов С16Н34 --- С8Н18 + С8Н16( t ) 2) Дегидрирование алканов ( де + гидр + ирование= удалять +водород + + действие) CnH2n+2 → CnH2n + H2 ( t, kat.) Отщепление водорода. 3) Гидрирование алкинов CnH2n-2+ H2 → CnH2n ( kat. Ni, Pt ) 4)Дегидратация спиртов (t, kat:H2SO4, H3PO4, Al2O3, ZnCl2) CH3-CH2OH →CH2=CH2 +H2O (170 , Н2SO4 конц.) При дегидратации спиртов атом водорода отщепляется от атома углерода, связанного с наименьшим числом атомов водорода (правило А.М. Зайцева). !!!

5) Дегидрогалогенирование моногалогеналканов (-HHal) действием твердой щелочи или ее спиртового раствора. Происходит по правилу Зайцева: СН3-СН2-С(СН3)Cl-CH3 + KOH→CH3-CH=C(CH3)-CH3 + 2-метил-2-хлорбутан 2-метилбутен-2 KCl + H2O !!!! 6) Дегалогенирование (-2Наl) дигалогеналканов с атомами галогена у
Слайд 16

5) Дегидрогалогенирование моногалогеналканов (-HHal) действием твердой щелочи или ее спиртового раствора. Происходит по правилу Зайцева: СН3-СН2-С(СН3)Cl-CH3 + KOH→CH3-CH=C(CH3)-CH3 + 2-метил-2-хлорбутан 2-метилбутен-2 KCl + H2O !!!! 6) Дегалогенирование (-2Наl) дигалогеналканов с атомами галогена у соседних атомов «С»действием Z n или Mq. CH3-CH2-CHBr-CHBr-CH3 + Zn →CH3-CH2-CH=CH-CH3 +ZnBr2 2,3-дибромпентан пентен-2 Вместо цинка может быть использован натрий или магний. Назад

Применение алкенов
Слайд 17

Применение алкенов

Правило Зайцева. Эта закономерность открыта в 1875 г. выдающимся русским химиком, учеником и тезкой А.М. Бутлерова Александром Михайловичем Зайцевым и носит название правило Зайцева. Реакция дегидратации – полная аналогия реакции дегидрогалогенирования. Де+ гидро +галоген + ирование = удалять + водо
Слайд 18

Правило Зайцева

Эта закономерность открыта в 1875 г. выдающимся русским химиком, учеником и тезкой А.М. Бутлерова Александром Михайловичем Зайцевым и носит название правило Зайцева. Реакция дегидратации – полная аналогия реакции дегидрогалогенирования. Де+ гидро +галоген + ирование = удалять + водород+ галоген + (действие). Отщепление галогеноводорода. Дегидратация отщепление воды.

Алкены. Назовите по систематической номенклатуре: СН2=СН-С(СН3)2СН3 а) 3,3 –диметилбутен-2, б) 2-диметилбутен -3, в) 2,2- диметилбутен -3, г) 3,3- диметилбутен-1 Бромэтан может быть превращен в этилен: а) взаимодействием с натрием б)взаимодействием со спиртовым раствором щелочи в) нагреванием с серн
Слайд 19

Алкены.

Назовите по систематической номенклатуре: СН2=СН-С(СН3)2СН3 а) 3,3 –диметилбутен-2, б) 2-диметилбутен -3, в) 2,2- диметилбутен -3, г) 3,3- диметилбутен-1 Бромэтан может быть превращен в этилен: а) взаимодействием с натрием б)взаимодействием со спиртовым раствором щелочи в) нагреванием с серной кислотой г) взаимодействием с водородом Реакция присоединения воды называется а)гидрирования б) дегидратация в) гидратация г) дегидрирования Какие вещества,названия которых приведены ниже, являются между собой гомологами? а) этен б) 2-метилпропен в) 1,2- дихлорпропен г) 1-хлорпропен Укажите названия алкенов, для которых возможна геометрическая изомерия: а) 1,1-дихлорэтен б) 1,2-дихлорэтен в) винилхлорид г) бутен -2 Укажите значение относительной молекулярной массы для алкена с 6-ю атомами углерода в молекуле: а) 86 б) 84 в) 82 г) 80 Укажите типы реакций, в которые может вступать пропен: а) полимеризации б) гидратации в) гидрирования г ) окисления В отличие от пропана пропен реагирует а) бромом б) бромной водой в) водой г) водородом

Домашнее задание. Цветков Хомченко № 20.1,20.2, 20.6(изомерия и номенклатура),2013,20.14,20.33,20.34. Журин А. Левина Л. с.31 № 52.
Слайд 20

Домашнее задание.

Цветков Хомченко № 20.1,20.2, 20.6(изомерия и номенклатура),2013,20.14,20.33,20.34. Журин А. Левина Л. с.31 № 52.

Алкадиены. Понятие алкадиенов. Классификация. Изомерия и номенклатура
Слайд 21

Алкадиены

Понятие алкадиенов

Классификация

Изомерия и номенклатура

Диеновые углеводороды (алкадиены). Диеновые УВ (алкадиены) – это УВ, в молекулах которых между атомами углерода имеются две двойные связи. Общая формула: CnH2n-2 , где n>3 Назад
Слайд 22

Диеновые углеводороды (алкадиены)

Диеновые УВ (алкадиены) – это УВ, в молекулах которых между атомами углерода имеются две двойные связи. Общая формула: CnH2n-2 , где n>3 Назад

Диены с кумулированными связями Две двойные связи находятся у одного атома углерода СН2=С=СН2 пропадиен (аллен) Диены с сопряженными связями Двойные связи разделены одной одинарной связью СН2=СН-СН=СН2 бутадиен-1,3 Диены с изолированными связями Двойные связи разделены двумя или более одинарными свя
Слайд 23

Диены с кумулированными связями Две двойные связи находятся у одного атома углерода СН2=С=СН2 пропадиен (аллен) Диены с сопряженными связями Двойные связи разделены одной одинарной связью СН2=СН-СН=СН2 бутадиен-1,3 Диены с изолированными связями Двойные связи разделены двумя или более одинарными связями СН2=СН-СН2-СН=СН2 пентадиен-1,4 Назад

1)Структурная изомерия цепи СН3-СН=СН-СН=СН-СН3 гексадиен-2,4 СН3-СН=С(СН3)-СН=СН2 3 -метилпентадиен-1,3 2)Структурная изомерия взаимного положения двойных связей СН2=СН-СН2-СН=СН-СН3 гексадиен-1,4 СН2=СН-СН2-СН2-СН=СН2 гексадиен-1,5 3) Пространственная изомерия 4) Межклассовая изомерия СН=С-СН2-СН2
Слайд 24

1)Структурная изомерия цепи СН3-СН=СН-СН=СН-СН3 гексадиен-2,4 СН3-СН=С(СН3)-СН=СН2 3 -метилпентадиен-1,3 2)Структурная изомерия взаимного положения двойных связей СН2=СН-СН2-СН=СН-СН3 гексадиен-1,4 СН2=СН-СН2-СН2-СН=СН2 гексадиен-1,5 3) Пространственная изомерия 4) Межклассовая изомерия СН=С-СН2-СН2-СН2-СН3 гексин-1 и его изомеры Изомерия и номенклатура диенов на примере диенового углеводорода с эмпирической формулой С6Н10 Назад

цис-3-метилпентадиен- 1,3

транс-3-метилпентадиен- 1,3

1) Реакции присоединения: а) галогенирование СН2=СН-СН=СН2+Br2(H2O)→CH2Br-CH=CH-CH2Br+ бутадиен-1,3 1,4-дибромбутен-2 + Br2(H20)→CH2Br-CHBr-CHBr-CH2Br 1,2,3,4-тетрабромбутан Бромная вода обесцвечивается. Присоединение идет в положение 1 и 4, а между атомами 2 и 3 образуется новая двойная связь. б) г
Слайд 25

1) Реакции присоединения: а) галогенирование СН2=СН-СН=СН2+Br2(H2O)→CH2Br-CH=CH-CH2Br+ бутадиен-1,3 1,4-дибромбутен-2 + Br2(H20)→CH2Br-CHBr-CHBr-CH2Br 1,2,3,4-тетрабромбутан Бромная вода обесцвечивается. Присоединение идет в положение 1 и 4, а между атомами 2 и 3 образуется новая двойная связь. б) гидрогалогенирование СН2=СН-СН=СН2 +НCl →CH3-CH=CH-CH2Cl бутадиен-1,3 1-хлорбутен -2 в)гидрирование ( +Н2) СН2=СН-СН=СН2 +Н2 →СН3-СН=СН-СН3 бутадиен -1,3 бутен-2 2) Полимеризация СН2=СН-СН=СН2 → (-СН2-СН=СН-СН2-)n полибутадиен (бутадиеновый каучук) Назад

Получение алкадиенов. 1)Каталитическое дегидрирование а) алканов СН3-СН2-СН2 –СН3 →СН2=СН-СН=СН2 +2Н2 (условия: Cr2O3/Al2O3,700) б)алкенов СН2=СН-СН2-СН3-→ СН2=СН-СН=СН2 + Н2 2) По способу Лебедева. 2С2Н5ОН →СН2=СН-СН=СН2+2Н2О+Н2 !!! Назад
Слайд 26

Получение алкадиенов

1)Каталитическое дегидрирование а) алканов СН3-СН2-СН2 –СН3 →СН2=СН-СН=СН2 +2Н2 (условия: Cr2O3/Al2O3,700) б)алкенов СН2=СН-СН2-СН3-→ СН2=СН-СН=СН2 + Н2 2) По способу Лебедева. 2С2Н5ОН →СН2=СН-СН=СН2+2Н2О+Н2 !!! Назад

В начале ХХ в. в связи с резким подорожанием натурального каучука возникла острая необходимость в разработке доступного и экономичного способа получения диенов. В 1926 г. в Советском Союзе был объявлен конкурс на лучший способ получения синтетического каучука. Сроки и условия конкурса были достаточн
Слайд 27

В начале ХХ в. в связи с резким подорожанием натурального каучука возникла острая необходимость в разработке доступного и экономичного способа получения диенов. В 1926 г. в Советском Союзе был объявлен конкурс на лучший способ получения синтетического каучука. Сроки и условия конкурса были достаточно жесткими.

Победителем оказалась группа химиков под руководством профессора Военно-медицинской академии г. Ленинграда Сергея Васильевича Лебедева. В качестве сырья использовался этиловый спирт. Этот способ получения бутадиена-1,3 получил название метода Лебедева и долгое время использовался в промышленности.
Слайд 28

Победителем оказалась группа химиков под руководством профессора Военно-медицинской академии г. Ленинграда Сергея Васильевича Лебедева. В качестве сырья использовался этиловый спирт. Этот способ получения бутадиена-1,3 получил название метода Лебедева и долгое время использовался в промышленности.

Понятие о терпенах. Каучук- не единственное природное производное изопрена. В природе существует множество углеводородов, структурными фрагментами которых является изопрен. Общее «родовое» название терпены. Общая формула-(С5Н8)n. Терпены очень широко распространены в природе. Многие являются составн
Слайд 29

Понятие о терпенах

Каучук- не единственное природное производное изопрена. В природе существует множество углеводородов, структурными фрагментами которых является изопрен. Общее «родовое» название терпены. Общая формула-(С5Н8)n. Терпены очень широко распространены в природе. Многие являются составной частью эфирных масел, придающих растениям специфический аромат. Оцимен содержится в базилике, а лимонен - в кожуре цитрусовых.

Эфирными маслами называют нерастворимые в воде маслообразные продукты, которые в отличие от жирных масел полностью испаряются и не оставляют следов на бумаге. Их используют в производстве душистых веществ, для ароматизации косметических средств. Первые рецептуры таких композиций относятся ко времена
Слайд 30

Эфирными маслами называют нерастворимые в воде маслообразные продукты, которые в отличие от жирных масел полностью испаряются и не оставляют следов на бумаге. Их используют в производстве душистых веществ, для ароматизации косметических средств. Первые рецептуры таких композиций относятся ко временам царя Хаммурапи (2100г. до н.э.) Сквален выделяют из печени акулы.

β-каротин содержит длинную цепочку сопряженных двойных связей. Такие фрагменты называют хромофорными группами. Подобные молекулы окрашивают в желтый цвет лепестки шафрана, в золотой - сладкую кукурузу, в оранжевый - апельсиновый сок, в розовый - мясо лосося. β-каротин содержится в моркови, которая и
Слайд 31

β-каротин содержит длинную цепочку сопряженных двойных связей. Такие фрагменты называют хромофорными группами. Подобные молекулы окрашивают в желтый цвет лепестки шафрана, в золотой - сладкую кукурузу, в оранжевый - апельсиновый сок, в розовый - мясо лосося. β-каротин содержится в моркови, которая имеет такую характерную окраску. Витамины группы А - производные терпенов. При недостатке витамина А возникает ослабление зрения. Поэтому сырая морковь и морковный сок так полезны для глаз.

Алкадиены 1. Укажите число - связей в молекуле 1,3- бутадиена: а) 8 б) 9 в) 7 г) 5 2.Молярная масса алкадиена равна 82 г/моль. Сколько атомов водорода содержится в молекуле алкадиена? а) 10 б) 12 в) 14 г) 8 3) В молекуле алкадиена 6 атомов углерода. Укажите значение относительной молекулярной массы
Слайд 32

Алкадиены 1. Укажите число - связей в молекуле 1,3- бутадиена: а) 8 б) 9 в) 7 г) 5 2.Молярная масса алкадиена равна 82 г/моль. Сколько атомов водорода содержится в молекуле алкадиена? а) 10 б) 12 в) 14 г) 8 3) В молекуле алкадиена 6 атомов углерода. Укажите значение относительной молекулярной массы алкадиена: а) 86 б) 84 в) 82 г) 80 4) Какой продукт преимущественно образуется при взаимодействии 1 моль 1,3- бутадиена с 1 моль брома при комнатной температуре а) 1,4 –дибромбутен-2 б) 1,2 –дибромбутен-1 в) 3,4 –дибромбутен-1 г) 1,2,3,4 – тетрабромбутан 5) Укажите схемы реакций, в которых продуктом может быть 1,3 –бутадиен а) СН3-СН(СН3) – СН2 –СН3 ---- (дегидрирование) б) СН3 –СН2 –СН2 СН3 ---( кат. t) в) 2 СН3 – СН2Cl + 2Na ---- ( t) г) 2С2 Н5ОН ----- (кат,t ) 6) С какими веществами реагирует 1,3 –бутадиен? а) бром б ) водород в ) кислород г ) хлороводород 7) При полном гидрировании бутадиена -1,3 образуется: а) бутен б) бутан в) изопрен г) бутен-2 8) Реакцией Лебедева называется реакция получения: а) 1.3- бутадиена из этилена б) 1,3 –бутадиена из винилхлорида в) 1,3 –бутадиена из бутана г) 1,3 –бутадиена из этанола 9) В результате вулканизации каучука можно получить: а) гуттаперчу б) резину в) эбонит г) фенопласт 10) Укажите формулу элементарного звена бутадиенового каучука: а) СН2=СН-СН=СН2 б) -СН2-СН-СН-СН2- в) -СН2-СН=СН-СН2 г ) -СН2=СН –СН=СН2-

Алкины. Определение алкинов
Слайд 33

Алкины

Определение алкинов

Алкины (ацетиленовые УВ). Алкины – это углеводороды, в молекулах которых два атома углерода находятся в состоянии SP-гибридизации и связаны друг с другом тройной связью. Общая формула:CnH2n-2, n>2 Длина связи в алкинах равна 0,120 нм. Назад
Слайд 34

Алкины (ацетиленовые УВ)

Алкины – это углеводороды, в молекулах которых два атома углерода находятся в состоянии SP-гибридизации и связаны друг с другом тройной связью. Общая формула:CnH2n-2, n>2 Длина связи в алкинах равна 0,120 нм. Назад

Углеродного скелета с «С» >5 CНΞС-СН2-СН2-СН3 СНΞС-СН –СН3 бутин-1 СН3 3-метилбутин-1 Положения тройной (кратной) связи СНΞС-СН2-СН3 СН3-СΞС-СН3 бутин-1 бутин-2 Классов соединений (алкадиены) СНΞС-СН2-СН3 СН2=СН-СН=СН2 бутин-1 бутадиен-1,3 Пространственной изомерии нет Назад
Слайд 35

Углеродного скелета с «С» >5 CНΞС-СН2-СН2-СН3 СНΞС-СН –СН3 бутин-1 СН3 3-метилбутин-1 Положения тройной (кратной) связи СНΞС-СН2-СН3 СН3-СΞС-СН3 бутин-1 бутин-2 Классов соединений (алкадиены) СНΞС-СН2-СН3 СН2=СН-СН=СН2 бутин-1 бутадиен-1,3 Пространственной изомерии нет Назад

АН → ИН Выбор главной цепи и начало нумерации определяется тройной связью Правила составления названий алкинов по международной номенклатуре аналогичны правилам для алкенов. Назад
Слайд 36

АН → ИН Выбор главной цепи и начало нумерации определяется тройной связью Правила составления названий алкинов по международной номенклатуре аналогичны правилам для алкенов. Назад

С2-С4-газы, С5-С16-жидкости,С>17 твердые вещества, растворимость в воде небольшая, но больше чем у алкенов и алканов, р Т кип (разв), с увеличением Мr Tкип увеличивается. Назад
Слайд 37

С2-С4-газы, С5-С16-жидкости,С>17 твердые вещества, растворимость в воде небольшая, но больше чем у алкенов и алканов, р Т кип (разв), с увеличением Мr Tкип увеличивается. Назад

Химические свойства алкинов. Алкины во многих реакциях обладают большей реакционной способностью,чем алкены. Для алкинов,как и для алкенов, характерны реакции присоединения. Так как тройная связь содержит две π-связи, алкины могут вступать в реакции двойного присоединения (присоединять 2 молекулы ре
Слайд 38

Химические свойства алкинов.

Алкины во многих реакциях обладают большей реакционной способностью,чем алкены. Для алкинов,как и для алкенов, характерны реакции присоединения. Так как тройная связь содержит две π-связи, алкины могут вступать в реакции двойного присоединения (присоединять 2 молекулы реагента по тройной связи). Присоединение несимметричных реагентов к несимметричным алкинам происходит по правилу Марковникова.

I.Реакции присоединения: 1.Присоединение водорода (гидрирование) На I ступени образуются алкены, на II cтупени- алканы: С 2 H 2 + Н2 → СН2=СН2 (кат. Pt, Pd, Ni, t=150) CН2=СН2 +Н2→СН3-СН3 Суммарное уравнение: С 2Н 2+2Н2 →СН3-СН3 2.Присоединение галогенов (галогенирование) На I ступени образуются диг
Слайд 39

I.Реакции присоединения: 1.Присоединение водорода (гидрирование) На I ступени образуются алкены, на II cтупени- алканы: С 2 H 2 + Н2 → СН2=СН2 (кат. Pt, Pd, Ni, t=150) CН2=СН2 +Н2→СН3-СН3 Суммарное уравнение: С 2Н 2+2Н2 →СН3-СН3 2.Присоединение галогенов (галогенирование) На I ступени образуются дигалогеналкены, на II- тетрагалогеналканы: С 4Н 6 + Br2→CН Br =С Br -СН2-СН3 бутин -1 ( Н2О) 1,2-дибромбутен-1 СНBr=СBr-СН2-СН3 +Br2---CHBr2-CBr2-CH2-CH3 ( H2O) 1,1,2,2-тетрабромбутан Реакция алкинов с бромной водой – качественная реакция на алкины. Бромная вода обесцвечивается.

3.Присоединение галогеноводородов (гидрогалогенирование) На I ступени образуются моногалогеналкены, на II –дигалогеналканы: С 2Н 2 + НCl →CH2=CHCl+HCl→CH3-CHCl2 хлорэтен 1,1-дихлорэтан (Cu, Hg ) 4.Присоединение воды (гидратация) Происходит по правилу Марковникова. Ацетилен образует альдегид, его гом
Слайд 40

3.Присоединение галогеноводородов (гидрогалогенирование) На I ступени образуются моногалогеналкены, на II –дигалогеналканы: С 2Н 2 + НCl →CH2=CHCl+HCl→CH3-CHCl2 хлорэтен 1,1-дихлорэтан (Cu, Hg ) 4.Присоединение воды (гидратация) Происходит по правилу Марковникова. Ацетилен образует альдегид, его гомологи –кетоны (реакция М.Г. Кучерова): С 2Н2 + НОН→ СН3-СОН кат.Hg этаналь С 3Н4 + НОН→ СН3-С-СН3 О пропанон (ацетон)

Реакция с KMnO4 является качественной реакцией на алкины. Раствор KMnO4 обесцвечивается.
Слайд 41

Реакция с KMnO4 является качественной реакцией на алкины. Раствор KMnO4 обесцвечивается.

Кислотные свойства ацетиленовых углеводородов. Атом водорода в ацетилене и его гомологах, содержащих тройную связь на конце молекулы, довольно подвижен. Он может замещаться на металл, связанный с органическим остатком ионной связью. Продукты замещения можно отнести к классу солей, они называются аце
Слайд 42

Кислотные свойства ацетиленовых углеводородов. Атом водорода в ацетилене и его гомологах, содержащих тройную связь на конце молекулы, довольно подвижен. Он может замещаться на металл, связанный с органическим остатком ионной связью. Продукты замещения можно отнести к классу солей, они называются ацетиленидами. С 2Н2 + 2 Na--- C 2Na2 + H2 ( в присутствии NH3) Реакция получения ацетиленидов серебра и меди (I) позволяет отличить алкины с концевой тройной связью от алканов, алкенов и алкинов с тройной связью в середине углеродной цепи. С 2Н 2+ Ag2O --- C 2Ag 2 + H2O (хлопья серого осадка) Во влажном состоянии ацетиленид серебра безопасен, а при высыхании сильно взрывается от удара или поджигания.

III. Реакции полимеризации. Очень длинные цепи молекулы ацетилена образуют с трудом, а вот несколько молекул (от двух до пяти ) соединяются друг с другом относительно легко. Впервые подобную реакцию в 1866г. Осуществил М. Бертло. При нагревании ацетилена до 600 градусов С ему удалось получить неболь
Слайд 43

III. Реакции полимеризации. Очень длинные цепи молекулы ацетилена образуют с трудом, а вот несколько молекул (от двух до пяти ) соединяются друг с другом относительно легко. Впервые подобную реакцию в 1866г. Осуществил М. Бертло. При нагревании ацетилена до 600 градусов С ему удалось получить небольшое количество бензола. Спустя 60 лет русский химик Николай Дмитриевич Зелинский обнаружил, что катализатором данной реакции является углерод (активированный уголь). С тех пор эта реакция носит имя Н.Д.Зелинского. 3С2Н2-----С6Н6 бензол Назад

!!!В 1955г. Д. Натта с сотрудниками синтезировал полиацетилен, представлявший собой смесь цис-, трансизомеров: цис-полиацетилен, красного цвета, менее устойчив, транс- полиацетилен, синего цвета, более устойчив. Полиацетилен открыл новую эру токопроводящих полимеров. В 1976г. в лаборатории японского
Слайд 44

!!!В 1955г. Д. Натта с сотрудниками синтезировал полиацетилен, представлявший собой смесь цис-, трансизомеров: цис-полиацетилен, красного цвета, менее устойчив, транс- полиацетилен, синего цвета, более устойчив. Полиацетилен открыл новую эру токопроводящих полимеров. В 1976г. в лаборатории японского ученого Хидэки Сиракавы было сделано удивительное открытие. Если пленку из этого материала обработать иодом, получается золотистое покрытие с металлическим блеском, которое проводит электрический ток в миллиард раз лучше, чем сам полиацетилен! Эти материалы используются в сотнях электронных и звуковоспроизводящих устройств.

Получение алкинов. Пиролиз метана (метановый способ) .В 1868 г. М. Бертло, пропуская через метан электрический разряд, обнаружил в смеси образующихся газов ацетилен. 2СН4 →С2Н2 + 3Н2 Дегидрогалогенирование дигалогеналканов В 60-х гг.XIXв. Молодым русским ученым М. Мясникову и В. Савичу удалось получ
Слайд 45

Получение алкинов

Пиролиз метана (метановый способ) .В 1868 г. М. Бертло, пропуская через метан электрический разряд, обнаружил в смеси образующихся газов ацетилен. 2СН4 →С2Н2 + 3Н2 Дегидрогалогенирование дигалогеналканов В 60-х гг.XIXв. Молодым русским ученым М. Мясникову и В. Савичу удалось получить ацетилен взаимодействием 1,2-дибромэтана с кипящим спиртовым раствором гидроксида калия СН2Br-CH2Br +KOH (спирт. р-р) →CH2=CHBr +KBr +H2O CH2=CHBr + KOH (спирт.р-р) →С2Н2 +KBr + H2O Карбидный способ В 1836г. английский химик Э.Дэви получил бесцветный газ, горящий красноватым коптящим пламенем при действии воды на карбид кальция CaC2 + 2 H2O → Ca(OH)2 +C2H2 (ацетилен) Назад

Применение ацетилена
Слайд 46

Применение ацетилена

Список литературы. 1. Настольная книга учителя Химия 9 класс О.С. Габриелян, И.Г. Остроумов 2. Настольная книга учителя Химия 10 класс О.С. Габриелян, И.Г. Остроумов 3. Теория химического строения. Углеводороды. Рабочая тетрадь. А. Журин, Л. Левина. 4. Химия внутри нас Введение в бионеорганическую и
Слайд 47

Список литературы

1. Настольная книга учителя Химия 9 класс О.С. Габриелян, И.Г. Остроумов 2. Настольная книга учителя Химия 10 класс О.С. Габриелян, И.Г. Остроумов 3. Теория химического строения. Углеводороды. Рабочая тетрадь. А. Журин, Л. Левина. 4. Химия внутри нас Введение в бионеорганическую и биоорганическую химию А.С. Егоров, Н.М. Иванченко, К.П. Шацкая. 5. Химия Пособие для школьников старших классов и поступающих в вузы. О.С. Габриелян, И.Г. Остроумов 6. Репетитор по химии под редакцией А.С. Егорова

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Окружающий мир
Автор презентации:Галенко Алексей Михайлович
Содержит:47 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации