Презентация "к диплому (пример)" по обществознанию – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11

Презентацию на тему "к диплому (пример)" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Обществознание. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 11 слайд(ов).

Слайды презентации

Презентация к дипломной работе. Разработка многопрофильной системы информационного поиска
Слайд 1

Презентация к дипломной работе

Разработка многопрофильной системы информационного поиска

Основные компании. Amazon Google Яндекс Amazon Twitter Microsoft
Слайд 2

Основные компании

Amazon Google Яндекс Amazon Twitter Microsoft

Характеристики сложноструктурированных данных. Внутренняя интерпретация. Наличие внутренней структуры связей. Шкалирование. Погружение в пространство с семантической метрикой. Наличие активности.
Слайд 3

Характеристики сложноструктурированных данных

Внутренняя интерпретация. Наличие внутренней структуры связей. Шкалирование. Погружение в пространство с семантической метрикой. Наличие активности.

Используемые алгоритмы. PageRank DBScan Rock Наивный байесовский классификатор Семантические сети
Слайд 4

Используемые алгоритмы

PageRank DBScan Rock Наивный байесовский классификатор Семантические сети

Области применения системы информационного поиска. Поиск информации. Формирование рекомендаций. Установление авторства. Проверка на плагиат. Автоматическая генерация текстов для SEO (поисковой оптимизации). Лингвистический анализ литературных текстов. Корректировка текстов и исправление опечаток.
Слайд 5

Области применения системы информационного поиска

Поиск информации. Формирование рекомендаций. Установление авторства. Проверка на плагиат. Автоматическая генерация текстов для SEO (поисковой оптимизации). Лингвистический анализ литературных текстов. Корректировка текстов и исправление опечаток.

Алгоритм PageRank. Каждой странице присваиваем вес равной единице. Подсчитываем количество исходящих связей для каждой страницы. Вычисляем ранг каждой страницы с помощью формулы. Где A – страница, ранг которой необходимо найти, C(T1) – количество исходящих ссылок, d – коэффициент затухания.
Слайд 6

Алгоритм PageRank

Каждой странице присваиваем вес равной единице. Подсчитываем количество исходящих связей для каждой страницы. Вычисляем ранг каждой страницы с помощью формулы. Где A – страница, ранг которой необходимо найти, C(T1) – количество исходящих ссылок, d – коэффициент затухания.

Место для блок-схемы
Слайд 7

Место для блок-схемы

Алгоритм ROCK. Procedurecluster (S, k) Begin 1. link := compute-links (S)//Вычисляем связи в множестве точек S 2. for each s from S do 3. q[s] := build-local-heap (link,S)//Из каждой точки множества S на основе связей формируем кластер 4. Q:=build-global-heap (S,q) //Содержит список всех кластеров м
Слайд 8

Алгоритм ROCK

Procedurecluster (S, k) Begin 1. link := compute-links (S)//Вычисляем связи в множестве точек S 2. for each s from S do 3. q[s] := build-local-heap (link,S)//Из каждой точки множества S на основе связей формируем кластер 4. Q:=build-global-heap (S,q) //Содержит список всех кластеров множества S 5. whilesize (Q) >kdo {//Формируем кластеры, точки, которых имеют максимальное число связей до тех пор, пока не получим желаемое число кластеров 6. u := extract-max (Q) 7. v := max (q[u]) 8. delete (Q,v) 9. w:= merge (u,v) 10. for each x from (q[u] or q[v]) do { 11. link [x,w] := link [x,u] + link [x,v] 12. delete (q[x],u); delete (q[x],v) 13. insert (q[x],w,g(x,w)); insert (q[w],x,g(x,w)); 14. update (Q,x,q[x]) 15. } 16. insert (Q,w,q[w])//Добавляем кластер в список всех кластеров 17. deallocate (q[u]); deallocate (q[v]); 18. } end.

Алгоритм DBSCAN. public List cluster() { int clusterId = getNextClusterId(); for(DataPointp : points) { if(isUnclassified(p) ) {//Проверяем классифицировали ли мы данную точку. boolean isClusterCreated = createCluster(p, clusterId); //Создаемкластердлякаждойточки if( isClusterCreated ) { clusterId =
Слайд 9

Алгоритм DBSCAN

public List cluster() { int clusterId = getNextClusterId(); for(DataPointp : points) { if(isUnclassified(p) ) {//Проверяем классифицировали ли мы данную точку. boolean isClusterCreated = createCluster(p, clusterId); //Создаемкластердлякаждойточки if( isClusterCreated ) { clusterId = getNextClusterId(); } } } List allClusters = new ArrayList(); for(Map.Entry> e : clusters.entrySet()) { String label = String.valueOf(e.getKey());//Создаем кластер и имя длянего Set points = e.getValue(); if( points != null && !points.isEmpty() ) { Cluster cluster = new Cluster(label, e.getValue()); allClusters.add(cluster); } } returnallClusters;//Возвращаем список всех кластеров, которые были созданы }

private boolean createCluster(DataPoint p, Integer clusterId){ Set nPoints = findNeighbors(p, eps); if( nPoints.size()  0 ) { //Просматриваем все точки, если нашли точку, которую уже рассматривали то ставим ей статус пограничной, добавляем в кластер и удаляем из рассмотрения DataPoint nPoint = nPoin
Слайд 10

private boolean createCluster(DataPoint p, Integer clusterId){ Set nPoints = findNeighbors(p, eps); if( nPoints.size() 0 ) { //Просматриваем все точки, если нашли точку, которую уже рассматривали то ставим ей статус пограничной, добавляем в кластер и удаляем из рассмотрения DataPoint nPoint = nPoints.iterator().next(); Set nnPoints = findNeighbors(nPoint, eps); if( nnPoints.size() >= minPoints ) { for(DataPoint nnPoint : nnPoints ) { if( isNoise(nnPoint) ) { assignPointToCluster(nnPoint, clusterId); //Добавляемточкуккластеру } else if( isUnclassified(nnPoint) ){ nPoints.add(nnPoint); assignPointToCluster(nnPoint, clusterId);} } } nPoints.remove(nPoint); //Удаляемточкуизрассмотрения } isClusterCreated = true; } return isClusterCreated; }

Наивный байесовский классификатор. Место для блок-схемы.
Слайд 11

Наивный байесовский классификатор

Место для блок-схемы.

Список похожих презентаций

Мой первый учитель и пример для подражания

Мой первый учитель и пример для подражания

Линейка, посвященная дню знаний. Наша дружная семья. Я С помощником главы схода общины «Отрада». Наши награды. День мира вахта памяти. Акция «Чистые ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 января 2015
Категория:Обществознание
Содержит:11 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации