- Атомная энергетика России

Презентация "Атомная энергетика России" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21

Презентацию на тему "Атомная энергетика России" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 21 слайд(ов).

Слайды презентации

ATOMCON-2008 26.06.2008. Стратегия развития атомной энергетики России до 2050 года Рачков В.И., Директор Департамента научной политики Госкорпорации «Росатом», доктор технических наук, профессор
Слайд 1

ATOMCON-2008 26.06.2008

Стратегия развития атомной энергетики России до 2050 года Рачков В.И., Директор Департамента научной политики Госкорпорации «Росатом», доктор технических наук, профессор

Мировые прогнозы развития атомной энергетики. Выравнивание удельных энергопотреблений в развитых и развивающихся странах потребует увеличения спроса на энергоресурсы к 2050 г. в три раза. Существенную долю прироста мировых потребностей в топливе и энергии может взять на себя атомная энергетика, отве
Слайд 2

Мировые прогнозы развития атомной энергетики

Выравнивание удельных энергопотреблений в развитых и развивающихся странах потребует увеличения спроса на энергоресурсы к 2050 г. в три раза. Существенную долю прироста мировых потребностей в топливе и энергии может взять на себя атомная энергетика, отвечающая требованиям крупномасштабной энергетики по безопасности и экономике.

WETO - «World Energy Technology Outlook - 2050», Еuropean Commission, 2006 «The Future of Nuclear Energy», Massachusetts Institute of Technology, 2003

Состояние и ближайшие перспективы развития атомной энергетики мира. в 12 странах строятся 30 ядерных энергоблоков общей мощностью 23,4 ГВт(э). около 40 стран официально заявили о намерениях создать ядерный сектор в своей национальной энергетике. К концу 2007 года в 30-ти странах мира (в которых живу
Слайд 3

Состояние и ближайшие перспективы развития атомной энергетики мира

в 12 странах строятся 30 ядерных энергоблоков общей мощностью 23,4 ГВт(э). около 40 стран официально заявили о намерениях создать ядерный сектор в своей национальной энергетике.

К концу 2007 года в 30-ти странах мира (в которых живут две трети населения планеты) действовали 439 ядерных энергетических реакторов общей установленной мощностью 372,2 ГВт(эл). Ядерная доля в электрической генерации в мире составила 17%.

Двухэтапное развитие атомной энергетики. Энергетика на тепловых реакторах и накопление в них плутония для запуска и параллельного освоения быстрых реакторов. Развитие на основе быстрых реакторов крупномасштабной АЭ, постепенно замещающей традиционную энергетику на ископаемом органическом топливе. Ст
Слайд 4

Двухэтапное развитие атомной энергетики

Энергетика на тепловых реакторах и накопление в них плутония для запуска и параллельного освоения быстрых реакторов. Развитие на основе быстрых реакторов крупномасштабной АЭ, постепенно замещающей традиционную энергетику на ископаемом органическом топливе. Стратегической целью развития АЭ являлось овладение на основе быстрых реакторов неисчерпаемыми ресурсами дешевого топлива – урана и, возможно, тория. Тактической задачей развития АЭ было использование тепловых реакторов на U-235 (освоенных для производства оружейных материалов, плутония и трития, и для атомных подводных лодок) с целью производства энергии и радиоизотопов для народного хозяйства и накопления энергетического плутония для быстрых реакторов.

Атомная отрасль России. В настоящее время отрасль включает в себя: Ядерно-оружейный комплекс (ЯОК). Комплекс по обеспечению ядерной и радиационной безопасности (ЯРБ). Ядерный энергетический комплекс (ЯЭК): ядерно-топливный цикл; атомная энергетика. Научно-технический комплекс (НТК). Госкорпорация «Р
Слайд 5

Атомная отрасль России

В настоящее время отрасль включает в себя: Ядерно-оружейный комплекс (ЯОК). Комплекс по обеспечению ядерной и радиационной безопасности (ЯРБ). Ядерный энергетический комплекс (ЯЭК): ядерно-топливный цикл; атомная энергетика. Научно-технический комплекс (НТК). Госкорпорация «РОСАТОМ» призвана обеспечить единство системы управления в целях синхронизации программ развития отрасли с системой внешних и внутренних приоритетов России. Основная задача ОАО «Атомэнергопром» - формирование глобальной компании, успешно конкурирующей на ключевых рынках.

В 2008 году работают 10 АЭС (31 энергоблок) мощностью – 23,2 ГВт. В 2007 году АЭС произвели 158,3 млрд.кВт.ч электроэнергии. Доля АЭС: в общем производстве электроэнергии – 15,9% (в европейской части – 29,9%); в общей установленной мощности - 11,0%. АЭС России в 2008 году
Слайд 6

В 2008 году работают 10 АЭС (31 энергоблок) мощностью – 23,2 ГВт. В 2007 году АЭС произвели 158,3 млрд.кВт.ч электроэнергии. Доля АЭС: в общем производстве электроэнергии – 15,9% (в европейской части – 29,9%); в общей установленной мощности - 11,0%.

АЭС России в 2008 году

ЯЭК: Ядерно-топливный цикл
Слайд 7

ЯЭК: Ядерно-топливный цикл

Недостатки современной ядерной энергетики. Открытый ЯТЦ тепловых реакторов - ограниченный топливный ресурс и проблема обращения с ОЯТ. Большие капитальные затраты на сооружение АЭС. Ориентация на энергоблоки большой единичной мощности с привязкой к электросетевым узлам и крупным электропотребителям.
Слайд 8

Недостатки современной ядерной энергетики

Открытый ЯТЦ тепловых реакторов - ограниченный топливный ресурс и проблема обращения с ОЯТ. Большие капитальные затраты на сооружение АЭС. Ориентация на энергоблоки большой единичной мощности с привязкой к электросетевым узлам и крупным электропотребителям. Низкая способность АЭС к маневру мощностью. В настоящее время в мире нет определенной стратегии обращения с ОЯТ тепловых реакторов (к 2010 г. Будет накоплено более 300 000 тонн ОЯТ, с ежегодным приростом 11 000-12 000 тонн ОЯТ). В России накоплено 14 000 тонн ОЯТ суммарной радиоактивностью 4,6 млрд. Ки с ежегождным приростом 850 тонн ОЯТ. Необходим переход на сухой способ хранения ОЯТ.

Переработку основной массы облученного ядерного топлива целесообразно отложить до начала серийного строительства быстрых реакторов нового поколения.

Проблемы обращения с РАО и ОЯТ. Тепловой реактор мощностью 1 ГВт производит в год 800 тонн низко- и среднеактивных РАО и 30 тонн высокоактивного ОЯТ. Высокоактивные отходы, занимая по объему менее 1%, по суммарной активности занимают 99%. Ни одна из стран не перешла к использованию технологий, позв
Слайд 9

Проблемы обращения с РАО и ОЯТ

Тепловой реактор мощностью 1 ГВт производит в год 800 тонн низко- и среднеактивных РАО и 30 тонн высокоактивного ОЯТ. Высокоактивные отходы, занимая по объему менее 1%, по суммарной активности занимают 99%. Ни одна из стран не перешла к использованию технологий, позволяющих решить проблему обращения с облученным ЯТ и радиоактивными отходами. Тепловой реактор электрической мощностью 1 ГВт производит ежегодно 200 кг плутония. Скорость накопления плутония в мире составляет ~70 т/год. Основным международным документом, регулирующим использование плутония, является Договор о нераспространении ядерного оружия (ДНЯО). Для усиления режима нераспространения необходима его технологическая поддержка.

Направления стратегии в области атомного машиностроения. Достройка производства критических элементов технологии ЯСПП на российских предприятиях, полностью или частично входящих в структуру Госкорпорации “РОСАТОМ”. Создание альтернативных нынешним монополистам поставщиков основного оборудования. По
Слайд 10

Направления стратегии в области атомного машиностроения

Достройка производства критических элементов технологии ЯСПП на российских предприятиях, полностью или частично входящих в структуру Госкорпорации “РОСАТОМ”. Создание альтернативных нынешним монополистам поставщиков основного оборудования. По каждому типу оборудования предполагается сформировать не менее двух возможных производителей. Необходимо формирование тактических и стратегических альянсов Госкорпорации «РОСАТОМ» с основными участниками рынка.

Требования к крупномасштабным энерготехнологиям. Крупномасштабная энерготехнология не должна зависеть от естественной неопределенности, связанной с добычей ископаемого топливного сырья. Процесс «сжигания» топлива должен быть безопасным. Локализуемые отходы должны быть физически и химически не более
Слайд 11

Требования к крупномасштабным энерготехнологиям

Крупномасштабная энерготехнология не должна зависеть от естественной неопределенности, связанной с добычей ископаемого топливного сырья. Процесс «сжигания» топлива должен быть безопасным. Локализуемые отходы должны быть физически и химически не более активны, чем исходное топливное сырье. При умеренном росте установленной мощности АЭ ядерная энергетика будет развиваться в основном на тепловых реакторах с незначительной долей быстрых реакторов. В случае интенсивного развития ядерной энергетики решающую роль в ней станут играть быстрые реакторы.

Ядерная энергетика и риск распространения ядерного оружия. Элементы ядерной энергетики, определяющие риск распространения ядерного оружия: Новая ядерная технология не должна приводить к открытию новых каналов получения оружейных материалов и использованию ее для подобных целей. Развитие ядерной энер
Слайд 12

Ядерная энергетика и риск распространения ядерного оружия

Элементы ядерной энергетики, определяющие риск распространения ядерного оружия:

Новая ядерная технология не должна приводить к открытию новых каналов получения оружейных материалов и использованию ее для подобных целей. Развитие ядерной энергетики на быстрых реакторах с соответствующим образом построенным топливным циклом создает условия для постепенного снижения риска распространения ядерного оружия.

Разделение изотопов урана (обогащение). Выделение плутония и/или U-233 из облученного топлива. Долговременное хранение облученного топлива. Хранение выделенного плутония.

Развитие атомной энергетики России до 2020 года. Вывод: 3,7 ГВт. Калинин 4 достройка. НВАЭС-2 1. Ростов 2 достройка. НВАЭС-2 2 Ростов 3 Ростов 4 ЛАЭС-2 1 ЛАЭС-2 2 ЛАЭС-2 3 Белоярка 4 БН-800 Кола 2 НВАЭС 3 ЛАЭС-2 4 Кола 1 ЛАЭС 2 ЛАЭС 1 НВАЭС 4 Северская 1 Нижегород 1 Нижегород 2 Кола-2 1 Кола-2 2. об
Слайд 13

Развитие атомной энергетики России до 2020 года

Вывод: 3,7 ГВт

Калинин 4 достройка

НВАЭС-2 1

Ростов 2 достройка

НВАЭС-2 2 Ростов 3 Ростов 4 ЛАЭС-2 1 ЛАЭС-2 2 ЛАЭС-2 3 Белоярка 4 БН-800 Кола 2 НВАЭС 3 ЛАЭС-2 4 Кола 1 ЛАЭС 2 ЛАЭС 1 НВАЭС 4 Северская 1 Нижегород 1 Нижегород 2 Кола-2 1 Кола-2 2

обязательная дополнительная программа программа

Ввод: 32,1 ГВт (обязательная программа) Плюс 6,9 Гвт (дополнительная программа)

красной линией ограничено количество энергоблоков с гарантированным (ФЦП) финансированием синей линией обозначена обязательная программа ввода энергоблоков

Нижегород 3 ЮУральская 2 Тверская 1 Тверская 2 Центральная 1 Тверская 3 Тверская 4 ЮУральская 3 ЮУральская 4 Кола-2 3 Кола-2 4 ЮУральская 1 Северская 2 Прим 1 Прим 2 Курск 5 НВАЭС-2 3 Центральная 4 Нижегород 4 НВАЭС-2 4 Центральная 2 Центральная 3

Действующие блоки - 58 Остановленные блоки - 10

Штатный коэффициент должен уменьшаться от современных 1,5 чел/МВт до 0,3-0,5 чел/МВт.

Переход к новой технологической платформе. Ключевым элементом НТП является развитие технологии ЯСПП с реактором на быстрых нейтронах. Концепция «БЕСТ» с нитридным топливом, равновесным КВ, и тяжелометаллическим теплоносителем является наиболее перспективным выбором для создания базы новой ядерной эн
Слайд 14

Переход к новой технологической платформе

Ключевым элементом НТП является развитие технологии ЯСПП с реактором на быстрых нейтронах. Концепция «БЕСТ» с нитридным топливом, равновесным КВ, и тяжелометаллическим теплоносителем является наиболее перспективным выбором для создания базы новой ядерной энерготехнологии. Страхующим проектом является промышленно освоенный быстрый реактор на натриевом теплоносителе (БН). В силу проблем с масштабированием данный проект является менее перспективным, чем «БЕСТ», на его основе предполагается отработка новых видов топлива и элементов замкнутого ЯТЦ. Принцип внутренне присущей безопасности:

детерминистическое исключение тяжелых реакторных аварий и аварий на предприятиях ядерного топливного цикла; трансмутационный замкнутый ядерный топливный цикл с фракционированием продуктов переработки ОЯТ; технологическую поддержку режима нераспространения.

Возможная структура энергогенерации к 2050 году. Доля АЭ в ТЭК по выработке - 40%. Доля АЭ в ТЭК по выработке - 35%
Слайд 15

Возможная структура энергогенерации к 2050 году

Доля АЭ в ТЭК по выработке - 40%

Доля АЭ в ТЭК по выработке - 35%

Периоды развития ядерных технологий в XXI веке. Мобилизационный период: модернизация и повышение эффективности использования установленных мощностей, достройка энергоблоков, эволюционное развитие реакторов и технологий топливного цикла с их внедрением в промышленную эксплуатацию, разработка и опытна
Слайд 16

Периоды развития ядерных технологий в XXI веке

Мобилизационный период:

модернизация и повышение эффективности использования установленных мощностей, достройка энергоблоков, эволюционное развитие реакторов и технологий топливного цикла с их внедрением в промышленную эксплуатацию, разработка и опытная эксплуатация инновационных технологий для АЭС и топливного цикла.

Переходный период: расширение масштабов атомной энергетики и освоение инновационных технологий реакторов и топливного цикла, (быстрые реакторы, высокотемпературные реакторы, реакторы для региональной энергетики, замкнутый уран-плутониевый и торий-урановый цикл, использование полезных и выжигание опасных радионуклидов, долговременная геологическая изоляция отходов, производство водорода, опреснение воды). Период развития: развертывание инновационных ядерных технологий, формирование многокомпонентной ядерной и атомно-водородной энергетики.

Краткосрочные задачи (2009-2015 гг.). Формирование технической базы для решения проблемы энергообеспечения страны на освоенных реакторных технологиях с безусловным развитием инновационных технологий: Повышение эффективности, модернизация, продление срока службы действующих реакторов, достройка энерг
Слайд 17

Краткосрочные задачи (2009-2015 гг.)

Формирование технической базы для решения проблемы энергообеспечения страны на освоенных реакторных технологиях с безусловным развитием инновационных технологий: Повышение эффективности, модернизация, продление срока службы действующих реакторов, достройка энергоблоков. Обоснование работы реакторов в режиме маневренности и разработка систем поддержания работы АЭС в базовом режиме. Сооружение энергоблоков следующего поколения, включая АЭС с БН-800 с одновременным созданием пилотного производства МОХ топлива. Разработка программ регионального атомного энергоснабжения на базе АЭС малой и средней мощности. Развертывание программы работ по замыканию ЯТЦ по урану и плутонию для решения проблемы неограниченного топливообеспечения и обращения с РАО и ОЯТ. Развертывание программы использования ядерных энергоисточников для расширения рынков сбыта (теплофикация, теплоснабжение, производство энергоносителей, опреснение морской воды). Сооружение энергоблоков в соответствие с Генсхемой.

Среднесрочные задачи (2015-2030 гг.). Расширение масштабов атомной энергетики и освоение инновационных технологий реакторов и топливного цикла: Сооружение энергоблоков в соответствие с Генсхемой. Разработка и внедрение инновационного проекта ВВЭР третьего поколения. Вывод из эксплуатации и утилизаци
Слайд 18

Среднесрочные задачи (2015-2030 гг.)

Расширение масштабов атомной энергетики и освоение инновационных технологий реакторов и топливного цикла: Сооружение энергоблоков в соответствие с Генсхемой. Разработка и внедрение инновационного проекта ВВЭР третьего поколения. Вывод из эксплуатации и утилизация энергоблоков первого и второго поколений и замещение их установками третьего поколения. Формирование технологической базы для перехода к крупномасштабной ядерной энергетике. Развитие радиохимического производства по переработке топлива. Опытная эксплуатация демонстрационного блока АЭС с быстрым реактором и производствами топливного цикла с внутренне присущей безопасностью. Опытная эксплуатация прототипного блока ГТ-МГР и производство топлива для него (в рамках международного проекта). Сооружение объектов малой энергетики, включая стационарные и плавучие энергетические и опреснительные станции. Разработка высокотемпературных реакторов для производства водорода из воды.

Долгосрочные задачи (2030-2050 гг.). Развертывание инновационных ядерных технологий, формирование многокомпонентной ядерной и атомно-водородной энергетики: Создание инфраструктуры крупномасштабной ядерной энергетики на новой технологической платформе. Сооружение демонстрационного блока АЭС с тепловы
Слайд 19

Долгосрочные задачи (2030-2050 гг.)

Развертывание инновационных ядерных технологий, формирование многокомпонентной ядерной и атомно-водородной энергетики: Создание инфраструктуры крупномасштабной ядерной энергетики на новой технологической платформе. Сооружение демонстрационного блока АЭС с тепловым реактором с торий-урановым циклом и его опытная эксплуатация. Переход к крупномасштабной ядерной энергетике требует широкого международного сотрудничества на государственном уровне. Необходимы совместные разработки, ориентированные на нужды как национальной, так и мировой энергетики.

Спасибо за внимание!
Слайд 20

Спасибо за внимание!

Атомная энергетика России Слайд: 21
Слайд 21

Список похожих презентаций

Атомная энергетика. Биологическое действие радиации. Термоядерная реакция

Атомная энергетика. Биологическое действие радиации. Термоядерная реакция

Одной из важнейших проблем, стоящих перед человечеством является проблема источников энергии. Потребление энергии растет столь быстро, что известные ...
Ядерный реактор Атомная энергетика

Ядерный реактор Атомная энергетика

Ядерный реактор. Это устройство предназначенное для осуществление управляемой ядерной реакции. В качестве топлива - U – 235. В природном уране этого ...
Атомная энергетика

Атомная энергетика

ВВП2020 / ВВП2007 = 2,3 среднегодовой темп роста = 6,5%. Экономический рост Инновационный сценарий МЭРТ. Экономический рост и энергетика Инновационный ...
Ядерная энергетика России

Ядерная энергетика России

Структура. Плюсы и минусы атомной энергетики (АЭ) Проблемы, стоящие перед атомной энергетикой Ядерная энергетика сегодня Страны зарубежья Мировые ...
Атомная энергетика

Атомная энергетика

Виды электростанций. гидроэлектростанции. теплоэлектростанции. атомные электростанции. ветряные электростанции. геотермальные электростанции. солнечные ...
Энергетика России

Энергетика России

Структура. Энергия и энергетика Мировая энергетика Энергетическая стратегия России. Энергия и Энергетика. Экос и его энергетика. Экос – (греч. oikos) ...
Атомная энергетика

Атомная энергетика

Атомная энергетика. Проблема «энергетического голода» появилась в 20 веке, поэтому возникла необходимость поиска новых источников энергии. История ...
Деление ядер урана Атомная энергетика

Деление ядер урана Атомная энергетика

Ядерные реакции. Ядерные реакции происходят, когда частицы вплотную приближаются к ядру и попадают в сферу действия ядерных сил. Первая ядерная реакция ...
Атомная энергетика

Атомная энергетика

План урока:. Повторение знаний об энергии, заключенной в ядрах атомов; Важнейшая проблема энергетики; Этапы отечественного атомного проекта; Ключевые ...
ГЭС России

ГЭС России

Саратовская ГЭС. Саратовская ГЭС им. Ленинского комсомола, одна из ГЭС Волжского каскада. Расположена у г. Балаково Саратовской области. Установленная ...
Вклад М.В.Ломоносова в развитие физической науки в России

Вклад М.В.Ломоносова в развитие физической науки в России

Оптика и теплота, электричество и тяготение, метеорология и искусство, география и металлургия, история и химия, философия и литература, геология ...
Альтернативная энергетика

Альтернативная энергетика

Возобновляемые источники энергии – это не альтернатива существующей энергетике, а ее будущее, и вопрос лишь в том, когда это будущее наступит, и что ...
Атомная физика

Атомная физика

Факты, свидетельствующие о сложном строении атома. Периодическая система Д.И. Менделеева Электролиз Открытие электрона Катодные лучи Радиоактивность. ...
Атомная физика

Атомная физика

Атомная физика. Атомная физика на стыке XIX и ХХ вв. в науке свершились открытия, заставившие заколебаться сложившуюся картину мира. Представлениям, ...
Атомная физика

Атомная физика

Понятие об атомном ядре впервые было введено Э.Резерфордом в 1911г. СТРОЕНИЕ АТОМА Модель Томсона. Модель Резерфорда. + Модель Томсона. - «Кекс с ...
Космодромы России

Космодромы России

ЦЕЛИ ИССЛЕДОВАНИЯ. Расширить свои знания о космодромах России, познакомиться с историей возникновения. Узнать о космодромах, находящихся в других ...
Атомная электростанция

Атомная электростанция

Предметы исследования. Атомные электростанции. Атомные Электростанции. АЭС различаются по типу реакторов и по виду отпускаемой энергии. Типы реакторов: ...
Атомная физика от А до Я

Атомная физика от А до Я

А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ш Щ Ъ Ы Ь Э Ю Я. Атом. Бета-распад. Водород. Гамма-лучи. Дейтерий. Естественная радиоактивность. Жёсткая ...
Атомная физика

Атомная физика

Физика атома и атомного ядра. В 1833 году при исследовании явления электролиза М. Фарадей установил, что ток в растворе электролита это упорядоченное ...

Конспекты

Ядерная энергетика в жизни человека

Ядерная энергетика в жизни человека

М. Министерство образования и науки Хабаровского края. КГБ ПОУ НПО №16. Открытый урок по предмету «Физика». Экологическая конференция. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.