Презентация "Фотоэффект" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18

Презентацию на тему "Фотоэффект" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 18 слайд(ов).

Слайды презентации

Фотоэффект. Лекции по дисциплине «Основы анализа поверхности методами атомной физики» Профессор каф. общей физики ТПУ Н.Н. Никитенков.
Слайд 1

Фотоэффект

Лекции по дисциплине «Основы анализа поверхности методами атомной физики» Профессор каф. общей физики ТПУ Н.Н. Никитенков.

Определение фотоэффекта. Фотоэффект - любые изменения, которые происходят с веществом при поглощении им электромагнитного излучения. Это могут быть: изменения строения и свойств молекул и кристаллов (фотохимический эффект), увеличение скорости химических реакций (фотокаталитический эффект), изменени
Слайд 2

Определение фотоэффекта

Фотоэффект - любые изменения, которые происходят с веществом при поглощении им электромагнитного излучения

Это могут быть: изменения строения и свойств молекул и кристаллов (фотохимический эффект), увеличение скорости химических реакций (фотокаталитический эффект), изменение характеристик движения носителей электрического заряда в веществе (фотоэлектрический эффект) и др.

ФОТОЭФФЕКТ. (фотоэлектронная эмиссия) испускание освещенным телом свободных электронов в вакуум; внешний внутренний. Применение: вакуумные и газонаполненные фотоэлементы с внешним фотоэффектом и более сложные вакуумные приборы, в которых фотоэмиттер служит источником свободных электронов. переход эл
Слайд 3

ФОТОЭФФЕКТ

(фотоэлектронная эмиссия) испускание освещенным телом свободных электронов в вакуум;

внешний внутренний

Применение: вакуумные и газонаполненные фотоэлементы с внешним фотоэффектом и более сложные вакуумные приборы, в которых фотоэмиттер служит источником свободных электронов

переход электронов в объеме освещенного полупроводника в возбужденное состояние (т. е. на более высокие энергетические уровни) без изменения нейтральности твердого тела, т. е. без выхода электронов за его пределы.

Применение: большой класс полупроводниковых приемников излучения: фоторезисторы, фотодиоды, солнечные батареи

проявляется, например, в виде изменения концентрации электронов проводимости в полупроводнике при его освещении, т. е. в изменении связанных с этим электрических свойств полупроводникового материала

свободные электроны могут собираться на анод, фокусироваться или ускоряться электрическим полем.

История развития учения о фотоэлектричестве и создании фотоэлектронных приборов насчитывает более 150 лет. 1839 г. - А. Беккерель впервые обнаружил образование фотоЭДС на контактах разнородных материалов. 1873 г. - первые сообщения о зависимости сопротивления селена от освещения. 1875 г. - построени
Слайд 4

История развития учения о фотоэлектричестве и создании фотоэлектронных приборов насчитывает более 150 лет. 1839 г. - А. Беккерель впервые обнаружил образование фотоЭДС на контактах разнородных материалов. 1873 г. - первые сообщения о зависимости сопротивления селена от освещения. 1875 г. - построение первого селенового фотоэлемента, использующего это свойство. 1876 г. - первый селеновый фотоэлемент с запирающим слоем. 1887 г. – открытие Г. Герцем внешнего фотоэффекта, который установил, что электрический разряд между двумя проводниками происходит значительно сильнее, когда металлические электроды освещаются светом, богатым ультрафиолетом (например, светом от искры другого разрядника). 1888 г. – итальянский уч. Аугусто Риги обнаружил, что проводящая пластинка, освещенная пучком ультрафиолетовых лучей, заряжается положительно; ввел термин фотоэлектрические явления. 1888 г. - А. Г. Столетовым выполнены фундаментальные работы по исследованию фотоэмиссии и сформулированы основные законы внешнего фотоэффекта. 1889 г. - Ф. Ленард и Дж. Дж. Томсон доказали, что при фотоэффекте испускаются электроны. 1889 г. - Эльстер и Гейтель построили первый вакуумный фотоэлемент с фотокатодом из сплава натрия и калия. 1905 г. - А. Эйнштейн объяснил основные закономерности фотоэффекта на основе гипотезы о квантовании энергии электромагнитного поля, проявляющемся в процессах испускания и поглощения света. 1921 г. – Нобелевская премия.

R V мА + -. Схема экспериментальной установки. МОНОХРОМАТИЧЕСКИЙ СВЕТ. U I
Слайд 5

R V мА + -

Схема экспериментальной установки

МОНОХРОМАТИЧЕСКИЙ СВЕТ

U I

-Uз 1 2 Iн1 Iн2. Зависимость силы фототока от приложенного напряжения. Кривая 2 соответствует большей интенсивности светового потока. Iн1 и Iн2 – токи насыщения, Uз – запирающий потенциал. При достаточно больших положительных напряжениях на аноде A фототок достигает насыщения, так как все электроны,
Слайд 6

-Uз 1 2 Iн1 Iн2

Зависимость силы фототока от приложенного напряжения. Кривая 2 соответствует большей интенсивности светового потока. Iн1 и Iн2 – токи насыщения, Uз – запирающий потенциал.

При достаточно больших положительных напряжениях на аноде A фототок достигает насыщения, так как все электроны, вырванные светом из катода (К), достигают А.

Ток насыщения Iн прямо пропорционален интенсивности падающего света.

Когда U |eU|. Если Uанода фототок прекращается.

Измеряя Uз, можно определить максимальную кинетическую энергию фотоэлектронов:

Зависимость запирающего потенциала Uз от частоты ν падающего света
Слайд 7

Зависимость запирающего потенциала Uз от частоты ν падающего света

Основные закономерности фотоэффекта, Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности (закон Эйнштейна). Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон: Для каждого вещества сущ
Слайд 8

Основные закономерности фотоэффекта,

Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности (закон Эйнштейна). Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон: Для каждого вещества существует так называемая красная граница фотоэффекта, т. е. наименьшая частота νmin, при которой еще возможен внешний фотоэффект. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin.

Фотоэлектронные приборы: 1. фотоэлементы. А - вывод анода; К – вывод фотокатода; ОК - вывод металлического охранного кольца (устанавливается для исключения попадания токов утечки на нагрузку). Типичные конструкции вакуумных фотоэлементов: Схема включения фотоэлемента с внешним фото­эффектом: К - фот
Слайд 9

Фотоэлектронные приборы:

1. фотоэлементы

А - вывод анода; К – вывод фотокатода; ОК - вывод металлического охранного кольца (устанавливается для исключения попадания токов утечки на нагрузку).

Типичные конструкции вакуумных фотоэлементов:

Схема включения фотоэлемента с внешним фото­эффектом: К - фотокатод; А - анод; Ф - световой поток; Е - источник постоянного тока, служащий для создания в пространстве между катодом и анодом электрического поля, ускоряющего фотоэлектроны; Rн — нагрузка.

Применение: Различные прибора и системы для регистрации световых потоков Недостаток: низкая чувствительность

2. фотоумножители. Принципиальная схема ФЭУ с делителем напряжения: ФК - фотокатод; I - фокусирующий электрод; Д - диафрагма; Э1. . . .Э5 - диноды; А - анод; RД - сопротивление делителя напряжения; RН — нагрузочное сопротивление в цепи анода; Са — емкость анода.
Слайд 10

2. фотоумножители

Принципиальная схема ФЭУ с делителем напряжения: ФК - фотокатод; I - фокусирующий электрод; Д - диафрагма; Э1. . . .Э5 - диноды; А - анод; RД - сопротивление делителя напряжения; RН — нагрузочное сопротивление в цепи анода; Са — емкость анода.

3. полупроводниковые устройства. Схема фотоэлемента с внутренним фотоэффектом: p и n — области полупроводника с дырочной и электронной проводимостями. Пунктирной линией обозначен р-n - переход. Полупроводниковый прибор с выпрямляющим полупроводниковым переход (p-n - переходом) – фотоэлемент, действи
Слайд 11

3. полупроводниковые устройства

Схема фотоэлемента с внутренним фотоэффектом: p и n — области полупроводника с дырочной и электронной проводимостями. Пунктирной линией обозначен р-n - переход

Полупроводниковый прибор с выпрямляющим полупроводниковым переход (p-n - переходом) – фотоэлемент, действие которого основано на внутреннем фотоэффекте.

В качестве материалов для полупроводникового фотоэлемента используются Se, GaAs, CdS, Ge и Si.

Применение: Приемники оптического излучения, для прямого преобразования энергии солнечного излучения в электрическую энергию в солнечных батареях.

1. Объективная фотометрия, различного рода световые, цветовые, спектральные измерения (спектроскопия и спектрофотометрия), а также измерение весьма слабых излучений (в астрофизике, в биологии и других областях научного исследования). 2. Фотоэлектрический контроль и управление производственными проце
Слайд 12

1. Объективная фотометрия, различного рода световые, цветовые, спектральные измерения (спектроскопия и спектрофотометрия), а также измерение весьма слабых излучений (в астрофизике, в биологии и других областях научного исследования). 2. Фотоэлектрический контроль и управление производственными процессами, автоматика, транспорт, бытовая техника. 3. Электронные счетные, запоминающие и записывающие устройства. 4. Регистрация и измерение инфракрасного излучения, сигнализация и локация в видимых и инфракрасных лучах, техника ночного видения. 5. Системы оптической связи на лазерах. 6. Преобразование энергии солнечного излучения непосредственно в электрическую энергию (солнечные батареи, широко применяющиеся для питания аппаратуры искусственных спутников Земли и других устройств). 7. Оптоэлектроника.

Основные области применения фотоэлектронных приборов

Фотоэффект Слайд: 13
Слайд 13
Фотоэффект Слайд: 14
Слайд 14
Фотоэффект Слайд: 15
Слайд 15
Фотоэффект Слайд: 16
Слайд 16
Основными законами внешнего фотоэффекта (справедливыми для любого материала фотоэмиттера) являются следующие экспериментально установленные соотношения: 1. Величина фототока в режиме насыщения прямо пропорцио­нальна интенсивности падающего света, если спектральный состав излучения неизменен (закон С
Слайд 17

Основными законами внешнего фотоэффекта (справедливыми для любого материала фотоэмиттера) являются следующие экспериментально установленные соотношения: 1. Величина фототока в режиме насыщения прямо пропорцио­нальна интенсивности падающего света, если спектральный состав излучения неизменен (закон Столетова).. 2. Для каждого вещества существует длинноволновая (крас­ная) граница спектра излучения λо, за которой (при λ > λо ) фотоэмиссии не происходит. Эту наибольшую длину волны λо (или наи­меньшую энергию кванта hνо ) излучения, еще вызывающего фото­эффект, называют также длинноволновым порогом фотоэффекта, а соответствующую ей наименьшую частоту νо= λо /с порогавой частотой (с – скорость света). 3. Максимальная начальная кинетическая энергия фотоэлект­ронов линейно возрастает с частотой падающего света и не зави­сит от его интенсивности (закон Эйнштейна).

Фото: А. Беккерель, Г. Герцем, Аугусто Риги, А. Г. Столетовым, Ф. Ленард и Дж. Дж. Томсон, Эльстер и Гейтель
Слайд 18

Фото: А. Беккерель, Г. Герцем, Аугусто Риги, А. Г. Столетовым, Ф. Ленард и Дж. Дж. Томсон, Эльстер и Гейтель

Список похожих презентаций

Фотоэффект и его законы.

Фотоэффект и его законы.

Цель:. Изучить явление фотоэффекта. Задачи:. 1. Изучить зависи­мости фототока от освещен­ности фотоэлемента 2.Снять вольт-амперную характеристику ...
Фотоэффект

Фотоэффект

Повторим пройденный материал. 1. Расскажите об инфракрасном излучении по плану: Источник излучения Свойства Применение 2. Расскажите об ультрафиолетовом ...
Фотоэффект и его законы

Фотоэффект и его законы

Фотоэффект и его законы. Теория фотоэффекта. Применение фотоэффекта. Гипотеза Планка. Атомы вещества излучают энергию отдельными порциями – квантами. ...
Фотоэффект

Фотоэффект

Модель абсолютно черного тела - небольшое отверстие в ящике сферической формы. Тело, которое при любой неразрушающей его температуре полностью поглощает ...
Фотоэффект

Фотоэффект

Фотоэффект. Фотоэффектом называется. Освобождение (полное/неполное) электронов от связей с атомами или молекулами вещества под воздействием света. ...
Фотоэффект

Фотоэффект

Столетов Александр Григорьевич 1839-1896 Выдающийся русский физик Исследовал свойства ферромагнетиков, несамостоятельный газовый разряд. Опытным путем ...
Фотоэффект

Фотоэффект

Фотоэффе́кт — это испускание электронов веществом под действием ультрафиолетового света. В конденсированных веществах (твёрдых и жидких) выделяют ...
Фотоэффект физика

Фотоэффект физика

Урок по физике для 11 класса по теме «Фотоэффект» Учитель: Москвитина Елена Викторовна. цели план диагр. далее. Фотоэффект – явление вырывания электронов ...
Фотоэффект

Фотоэффект

Открыт в 1887 году немецким физиком Генрихом Герцем Экспериментально исследован в 1888-1890 годах русским физиком А.Г.Столетовым Полностью исследован ...
Световые кванты. Фотоэффект

Световые кванты. Фотоэффект

Цикл научного познания. Тепловое излучение абсолютно черного тела: ультрафиолетовая катастрофа – расхождение классической теории теплового излучения ...
«Механические волны» физика

«Механические волны» физика

Цель исследования: установить с научной точки зрения, что такое звук. Задачи исследования: 1.    Изучить физическую теорию звука. 2.    Исследовать историю ...
Молекулярная физика и термодинамика

Молекулярная физика и термодинамика

Содержание:. Структура и содержание МКТ. Основные положения МКТ. Опытные обоснования МКТ. Роль диффузии и броуновского движения в природе и технике. ...
Сила трения физика

Сила трения физика

Определение. Сила трения - это сила, возникающая в плоскости касания тел при их относительном перемещении. Направление. Сила трения направлена противоположно ...
Тепловые двигатели физика

Тепловые двигатели физика

СОДЕРЖАНИЕ. Содержание Тепловой двигатель Тепловые машины и развитие техники Кто создал тепловые двигатели Виды тепловых двигателей Принцип работы ...
Простая и интересная физика у Вас дома

Простая и интересная физика у Вас дома

Содержание. Эксперименты на тепловые явления. Эксперимент на плотность. Научные забавы и прочие опыты. Как будут отпадать гвозди??? Вы ответили неверно!!! ...
Рентгеновские лучи физика

Рентгеновские лучи физика

Презентацию подготовила: Григорьвева Наталья. Руководитель: Баева Валентина Михайловна. Цель работы: узнать о жизни и изобретении великого ученого ...
Атомная физика

Атомная физика

Факты, свидетельствующие о сложном строении атома. Периодическая система Д.И. Менделеева Электролиз Открытие электрона Катодные лучи Радиоактивность. ...
Оптика и атомная физика

Оптика и атомная физика

В основу настоящего конспекта лекций положен курс лекций по оптике, разработанный профессором кафедры оптики Н.К. Сидоровым и заведующим кафедры оптики ...
«Сообщающиеся сосуды» физика

«Сообщающиеся сосуды» физика

Цель: изучить особенности сообщающихся сосудов и сформулировать основной закон сообщающихся сосудов. Опыт с двумя трубками. Опыт с сосудами разной ...

Конспекты

Фотоэффект

Фотоэффект

Средняя общеобразовательная школа-гимназия №17. г.Актобе Казахстан. Разработка. урока физики в 11 классе с применением. . ...
Фотоэффект

Фотоэффект

МОУ «Ялгинская средняя общеобразовательная школа». Урок-лекция. (11класс). Тема:. Зарождение квантовой теории. Фотоэффект. Теория ...
Фотоэффект

Фотоэффект

Учитель физики МБОУ «Кистутовская СОШ» Максатихинского района Аньчкова Алла Алексеевна. . УРОК ПО ФИЗИКЕ. 11 КЛАСС. ФОТОЭФФЕКТ. ...
Фотоэффект

Фотоэффект

Дата____________. Класс: 11. Тема урока: Фотоэффект. Цели урока. Образовательные. : Сформировать у учащихся представление о фотоэффекте, знакомство ...
Фотоэффект

Фотоэффект

Конспект урока. Решение задач по теме «Фотоэффект». Задачи:.  . обучающая: научить решать задачи различной сложности на фотоэффект;. развивающая: ...
Фотоэффект

Фотоэффект

Урок физики по теме "Фотоэффект". , . Разделы:.  . . Цели урока:. Образовательные: сформировать у учащихся представление о фотоэффекте и ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.