Презентация "Дифракция света" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43
Слайд 44
Слайд 45
Слайд 46
Слайд 47
Слайд 48
Слайд 49
Слайд 50
Слайд 51

Презентацию на тему "Дифракция света" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 51 слайд(ов).

Слайды презентации

Дифракция света
Слайд 1

Дифракция света

Характерным проявлением волновых свойств света является дифракция света —. отклонение от прямолинейного распространения на резких неоднородностях среды
Слайд 2

Характерным проявлением волновых свойств света является дифракция света —

отклонение от прямолинейного распространения на резких неоднородностях среды

Дифракция была открыта Франческо Гримальди в конце XVII в. Объяснение явления дифракции света дано Томасом Юнгом и Огюстом Френелем, которые не только дали описание экспериментов по наблюдению явлений интерференции и дифракции света, но и объяснили свойство прямолинейности распространения света с по
Слайд 3

Дифракция была открыта Франческо Гримальди в конце XVII в. Объяснение явления дифракции света дано Томасом Юнгом и Огюстом Френелем, которые не только дали описание экспериментов по наблюдению явлений интерференции и дифракции света, но и объяснили свойство прямолинейности распространения света с позиций волновой теории

Биографии

Принцип Гюйгенса — Френеля. Для вывода законов отражения и преломления мы использовали принцип Гюйгенса. Френель дополнил его формулировку для объяснения явления дифракции Определите, какое дополнение ввел Френель?
Слайд 4

Принцип Гюйгенса — Френеля

Для вывода законов отражения и преломления мы использовали принцип Гюйгенса. Френель дополнил его формулировку для объяснения явления дифракции Определите, какое дополнение ввел Френель?

Принцип Гюйгенса: каждая точка волновой поверхности является источником вторичных сферических волн
Слайд 5

Принцип Гюйгенса:

каждая точка волновой поверхности является источником вторичных сферических волн

Принцип Гюйгенса-Френеля: каждая точка волновой поверхности является источником вторичных сферических волн, которые интерферируют между собой
Слайд 6

Принцип Гюйгенса-Френеля:

каждая точка волновой поверхности является источником вторичных сферических волн,

которые интерферируют между собой

Задание: Попробуйте предположить как будет выглядеть дифракционная картина?
Слайд 7

Задание:

Попробуйте предположить как будет выглядеть дифракционная картина?

Будет ли вид дифракционной картины зависеть от длины волны (цвета)? Как будет выглядеть дифракционная картина в белом свете?
Слайд 9

Будет ли вид дифракционной картины зависеть от длины волны (цвета)? Как будет выглядеть дифракционная картина в белом свете?

Попробуйте предложить идею опыта по наблюдению дифракции
Слайд 10

Попробуйте предложить идею опыта по наблюдению дифракции

Построение дифракционной картины от круглого отверстия и круглого непрозрачного экрана
Слайд 11

Построение дифракционной картины от круглого отверстия и круглого непрозрачного экрана

Дифракция от различных препятствий: а) от тонкой проволочки; б) от круглого отверстия; в) от круглого непрозрачного экрана.
Слайд 12

Дифракция от различных препятствий: а) от тонкой проволочки; б) от круглого отверстия; в) от круглого непрозрачного экрана.

Зоны Френеля. Для того чтобы найти амплитуду световой волны от точечного монохроматического источника света А в произвольной точке О изотропной среды, надо источник света окружить сферой радиусом r=ct
Слайд 16

Зоны Френеля

Для того чтобы найти амплитуду световой волны от точечного монохроматического источника света А в произвольной точке О изотропной среды, надо источник света окружить сферой радиусом r=ct

Интерференция волны от вторичных источников, расположенных на этой поверхности, определяет амплитуду в рассматриваемой точке P, т. е. необходимо произвести сложение когерентных колебаний от всех вторичных источников на волновой поверхности
Слайд 17

Интерференция волны от вторичных источников, расположенных на этой поверхности, определяет амплитуду в рассматриваемой точке P, т. е. необходимо произвести сложение когерентных колебаний от всех вторичных источников на волновой поверхности

Так как расстояния от них до точки О различны, то колебания будут приходить в различных фазах. Наименьшее расстояние от точки О до волновой поверхности В равно r0
Слайд 18

Так как расстояния от них до точки О различны, то колебания будут приходить в различных фазах. Наименьшее расстояние от точки О до волновой поверхности В равно r0

Первая зона Френеля ограничивается точками волновой поверхности, расстояния от которых до точки О равны: где  — длина световой волны
Слайд 19

Первая зона Френеля ограничивается точками волновой поверхности, расстояния от которых до точки О равны: где  — длина световой волны

Вторая зона: Аналогично определяются границы других зон
Слайд 20

Вторая зона: Аналогично определяются границы других зон

Дифракция света Слайд: 17
Слайд 21
Дифракционные картины от одного препятствия с разным числом открытых зон
Слайд 22

Дифракционные картины от одного препятствия с разным числом открытых зон

Если разность хода от двух соседних зон равна половине длины волны, то колебания от них приходят в точку О в противоположных фазах и наблюдается интерференционный минимум, если разность хода равна длине волны, то наблюдается интерференционный максимум
Слайд 24

Если разность хода от двух соседних зон равна половине длины волны, то колебания от них приходят в точку О в противоположных фазах и наблюдается интерференционный минимум, если разность хода равна длине волны, то наблюдается интерференционный максимум

Таким образом, если на препятствии укладывается целое число длин волн, то они гасят друг друга и в данной точке наблюдается минимум (темное пятно). Если нечетное число полуволн, то наблюдается максимум (светлое пятно)
Слайд 25

Таким образом, если на препятствии укладывается целое число длин волн, то они гасят друг друга и в данной точке наблюдается минимум (темное пятно). Если нечетное число полуволн, то наблюдается максимум (светлое пятно)

Зонные пластинки. На этом принципе основаны т.н. зонные пластинки
Слайд 26

Зонные пластинки

На этом принципе основаны т.н. зонные пластинки

Дифракция света Слайд: 22
Слайд 27
Получение изображения с помощью зонной пластинки
Слайд 28

Получение изображения с помощью зонной пластинки

Условия наблюдения дифракции. Дифракция происходит на предметах любых размеров, а не только соизмеримых с длиной волны 
Слайд 29

Условия наблюдения дифракции

Дифракция происходит на предметах любых размеров, а не только соизмеримых с длиной волны 

Трудности наблюдения заключаются в том, что вследствие малости длины световой волны интерференционные максимумы располагаются очень близко друг к другу, а их интенсивность быстро убывает
Слайд 30

Трудности наблюдения заключаются в том, что вследствие малости длины световой волны интерференционные максимумы располагаются очень близко друг к другу, а их интенсивность быстро убывает

Границы применимости геометрической оптики. Дифракция наблюдается хорошо на расстоянии Если , то дифракция невидна и получается резкая тень (d - диаметр экрана). Эти соотношения определяют границы применимости геометрической оптики
Слайд 31

Границы применимости геометрической оптики

Дифракция наблюдается хорошо на расстоянии Если , то дифракция невидна и получается резкая тень (d - диаметр экрана). Эти соотношения определяют границы применимости геометрической оптики

Если наблюдение ведется на расстоянии , где d—размер предмета, то начинают проявляться волновые свойства света
Слайд 32

Если наблюдение ведется на расстоянии , где d—размер предмета, то начинают проявляться волновые свойства света

Соотношения длины волны и размера препятствия. На рис. показана примерная зависимость результатов опыта по распространению волн в зависимости от соотношения размеров препятствия и длины волны.
Слайд 33

Соотношения длины волны и размера препятствия

На рис. показана примерная зависимость результатов опыта по распространению волн в зависимости от соотношения размеров препятствия и длины волны.

Интерференционные картины от разных точек предмета перекрываются, и изображение смазывается, поэтому прибор не выделяет отдельные детали предмета. Дифракция устанавливает предел разрешающей способности любого оптического прибора
Слайд 34

Интерференционные картины от разных точек предмета перекрываются, и изображение смазывается, поэтому прибор не выделяет отдельные детали предмета. Дифракция устанавливает предел разрешающей способности любого оптического прибора

Разрешающая способность человеческого глаза приблизительно равна одной угловой минуте: , где D — диаметр зрачка; телескопа =0,02''; у микроскопа увеличение не более 2.103 раз. Можно видеть предметы, размеры которых соизмеримы с длиной световой волны
Слайд 35

Разрешающая способность человеческого глаза приблизительно равна одной угловой минуте: , где D — диаметр зрачка; телескопа =0,02''; у микроскопа увеличение не более 2.103 раз. Можно видеть предметы, размеры которых соизмеримы с длиной световой волны

Дифракционная решетка. Дифракционные решетки, представляющие собой точную систему штрихов некоторого профиля, нанесенную на плоскую или вогнутую оптическую поверхность, применяются в спектральном приборостроении, лазерах, метрологических мерах малой длины и т.д
Слайд 36

Дифракционная решетка

Дифракционные решетки, представляющие собой точную систему штрихов некоторого профиля, нанесенную на плоскую или вогнутую оптическую поверхность, применяются в спектральном приборостроении, лазерах, метрологических мерах малой длины и т.д

Дифракция света Слайд: 32
Слайд 37
Дифракция света Слайд: 33
Слайд 38
Величина d = a + b называется постоянной (периодом) дифракционной решетки, где а — ширина щели; b — ширина непрозрачной части
Слайд 39

Величина d = a + b называется постоянной (периодом) дифракционной решетки, где а — ширина щели; b — ширина непрозрачной части

Угол  - угол отклонения световых волн вследствие дифракции. Наша задача - определить, что будет наблюдаться в произвольном направлении  - максимум или минимум
Слайд 40

Угол  - угол отклонения световых волн вследствие дифракции. Наша задача - определить, что будет наблюдаться в произвольном направлении  - максимум или минимум

Оптическая разность хода Из условия максимума интерференции получим:
Слайд 41

Оптическая разность хода Из условия максимума интерференции получим:

Следовательно: - формула дифракционной решетки. Величина k — порядок дифракционного максимума ( равен 0,  1,  2 и т.д.)
Слайд 42

Следовательно: - формула дифракционной решетки. Величина k — порядок дифракционного максимума ( равен 0,  1,  2 и т.д.)

Определение  с помощью дифракционной решетки
Слайд 43

Определение  с помощью дифракционной решетки

Гримальди Франческо 2.IV.1618 - 28.XII.1663. Итальянский ученый. С 1651 года - священник. Открыл дифракцию света, систематически ее изучал и сформулировал некоторые правила. Описал солнечный спектр, полученный с помощью призмы. В 1662 г. определил величину поверхности Земли.
Слайд 45

Гримальди Франческо 2.IV.1618 - 28.XII.1663

Итальянский ученый. С 1651 года - священник. Открыл дифракцию света, систематически ее изучал и сформулировал некоторые правила. Описал солнечный спектр, полученный с помощью призмы. В 1662 г. определил величину поверхности Земли.

Френель Огюст Жан (10.V.1788 - 14.VII.1827). Французский физик. Научные работы посвящены физической оптике. Дополнил известный принцип Гюйгенса, введя так называемые зоны Френеля (принцип Гюйгенса - Френеля). Разработал в 1818 году теорию дифракции света
Слайд 46

Френель Огюст Жан (10.V.1788 - 14.VII.1827)

Французский физик. Научные работы посвящены физической оптике. Дополнил известный принцип Гюйгенса, введя так называемые зоны Френеля (принцип Гюйгенса - Френеля). Разработал в 1818 году теорию дифракции света

Юнг Томас 13.IV.1773-10.V.1829. Английский ученый. Полиглот. Научился читать в 2 года. Объяснил аккомодацию глаза, обнаружил интерференцию звука, объяснил интерференцию света, и ввел этот термин. Измерил длины волн световых лучей. Исследовал деформацию
Слайд 47

Юнг Томас 13.IV.1773-10.V.1829

Английский ученый. Полиглот. Научился читать в 2 года. Объяснил аккомодацию глаза, обнаружил интерференцию звука, объяснил интерференцию света, и ввел этот термин. Измерил длины волн световых лучей. Исследовал деформацию

Араго Доменик Франсуа (26.II.1786-2.X.1853). Французский физик и политический деятель. Автор многих открытий по оптике и электромагнетизму: хроматическую поляризацию света, вращение плоскости поляризации, намагничивание железных опилок вблизи проводника с током. Установил связь полярных сияний с маг
Слайд 48

Араго Доменик Франсуа (26.II.1786-2.X.1853)

Французский физик и политический деятель. Автор многих открытий по оптике и электромагнетизму: хроматическую поляризацию света, вращение плоскости поляризации, намагничивание железных опилок вблизи проводника с током. Установил связь полярных сияний с магнитными бурями. По его указаниями А.Физо и У.Фуко измерили скорость света, а У.Леверье открыл планету Нептун

Фраунгофер Йозеф (6.III.1787- 7.VI.1826). Немецкий физик. Научные работы относятся к физической оптике. Внёс существенный вклад в исследование дисперсии и создание ахроматических линз. Фраунгофер изучал дифракцию в параллельных лучах (так называемая дифракция Фраунгофера).Сначала от одной щели, а по
Слайд 49

Фраунгофер Йозеф (6.III.1787- 7.VI.1826)

Немецкий физик. Научные работы относятся к физической оптике. Внёс существенный вклад в исследование дисперсии и создание ахроматических линз. Фраунгофер изучал дифракцию в параллельных лучах (так называемая дифракция Фраунгофера).Сначала от одной щели, а потом от многих. Большой заслугой учёного является использование(с 1821 года) дифракционных решеток для исследования спектров (некоторые исследователи считают его даже изобретателем первой дифракционной решетки)

Пуассон Семион Дени (21.VI.1781 - 25.IV.1840). Французский механик, математик, физик, член Парижской академии наук (с 1812 года). Физические исследования относятся к магнетизму, капиллярности, теории упругости, гидромеханике, теории колебаний, теории света. Член Петербургской академии наук (с 1826 г
Слайд 50

Пуассон Семион Дени (21.VI.1781 - 25.IV.1840)

Французский механик, математик, физик, член Парижской академии наук (с 1812 года). Физические исследования относятся к магнетизму, капиллярности, теории упругости, гидромеханике, теории колебаний, теории света. Член Петербургской академии наук (с 1826 года)

КОНЕЦ
Слайд 51

КОНЕЦ

Список похожих презентаций

Дифракция света. Дифракционная решетка

Дифракция света. Дифракционная решетка

Повторим пройденный материал. Дисперсия это… Цветность световых волн зависит от… Источники называются когерентными, если… Скорость какого излучения ...
Дифракция света. Дифракционная решётка

Дифракция света. Дифракционная решётка

Дисперсия света Когерентные волны Интерференция света Условия максимума Условия минимума. Дифракция света- явление отклонение света от прямолинейного ...
Дифракция света

Дифракция света

Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает ...
Дифракция света принцип Гюйгенса

Дифракция света принцип Гюйгенса

В 1665г.итальянским ученым Гримальди были открыты такие явления, как интерференция и дифракция света. В темную комнату сквозь маленькое отверстие ...
Дифракция и интерференция света

Дифракция и интерференция света

Сложение волн волн на поверхности жидкости. Концентрические круговые волны с источниками в различных точках на поверхности воды, возникшие в результате ...
Полное отражение света

Полное отражение света

Закон преломления света позволяет объяснить интересное и практически важное явление – полное отражение света. Полное внутреннее отражение света. это ...
Отражение света

Отражение света

1.Что такое световой луч? Линию, вдоль которой распространяется световая энергия, называют световым лучом. 2.Что происходит со световой энергией, ...
Отражение и преломление света

Отражение и преломление света

Цель:. Познакомиться с явлением преломления света; Сформулировать закон преломления; Найти угол полного внутреннего отражения; Рассмотреть пример ...
Квантовые свойства света

Квантовые свойства света

Компьютерным вирусом называется программа, способная создавать свои копии (не обязательно полностью совпадающие с оригиналом) и внедрять их в различные ...
Электромагнитная природа света

Электромагнитная природа света

Что такое свет? «Пусть три столетья минуло с тех пор, Еще не разрешился этот спор. Один сказал, что свет это – волна, подобна механической она. Другой ...
Скорость света

Скорость света

О природе света размышляли с древних времен: Пифагор (около 580-500 лет до нашей эры): «Свет – это истечение «атомов» от предметов в глаза наблюдателя». ...
Природа света от Евклида до наших дней

Природа света от Евклида до наших дней

Цели:. Проследить развитие взглядов на природу света. Представить три подхода к решению вопроса о природе света. Первые представления о природе света. ...
Дисперсия света

Дисперсия света

Цель урока: дать понятие о дисперсии света; объяснить дисперсию с точки зрения электромагнит-ной теории; объяснить происхождение цветов окружающих ...
Дисперсия света

Дисперсия света

. Факты: Дисперсия – физическое явление разложение белого света в спектр в результате взаимодействия с веществом Опыт: Ньютон направлял на призму ...
Дисперсия и интерференция света

Дисперсия и интерференция света

И. Ньютон. Дисперсия- зависимость показателя преломления света от частоты колебаний ( длины волны). Белый свет состоит из семи цветов. Вакуум с=3·10 ...
Давление света Урок лекция

Давление света Урок лекция

«Открытие давления Лебедевым составило эпоху в физике» А. Ф. Иоффе. «Вы может быть знаете, что я всю жизнь воевал с Максвеллом, и вот ваш Лебедев ...
Давление света

Давление света

В яркий солнечный день на поверхность площадью 1м2 действует сила равная всего лишь 4х10-8Н. В 1905 году А.Эйнштейн выдвинул гипотезу: электромагнитное ...
Давление света

Давление света

ПОВТОРИМ! Ф о т о э ф ф е к т – это. 1. свечение металлов при пропускании по ним тока 2. нагрев вещества при его освещении 3. синтез глюкозы в растениях ...
Поляризация света

Поляризация света

В 1669 г. датский учёный Эразм Бартолин сообщил о своих опытах с кристаллами известкового шпата (CaCO3), чаще всего имеющими форму правильного ромбоэдра, ...
Применение альтернативного способа включения света и его выгода

Применение альтернативного способа включения света и его выгода

Гипотеза: При использовании системы включения света с датчиком движения в подъездах жилых домов мы наблюдаем существенную экономию по сравнению с ...

Конспекты

Дифракция света

Дифракция света

«Дифракция света». Курносова Светлана Александровна. Учитель физики МБОУ «Кировская средняя общеобразовательная школа», п. Кировский. Смоленского ...
Интерференция света. Дифракция света. Линзы. Дефекты зрения. Очки

Интерференция света. Дифракция света. Линзы. Дефекты зрения. Очки

Урок № 57-169. Интерференция света. Дифракция света. Линзы. Дефекты зрения. Очки. . . Интерференция света -. сложение в простран­стве двух и более ...
Волновые свойства света

Волновые свойства света

Урок физики в 11 классе в разделе «Оптика». Тема:. «Волновые свойства света». Цели:. 1. Познавательная: при помощи физического эксперимента познакомить ...
Электромагнитная природа света. Интерференция света

Электромагнитная природа света. Интерференция света

Разработка урока физики в 9 классе по теме "Электромагнитная природа света. Интерференция света". (класс с углублённым изучением физики). Долгова ...
Философия света

Философия света

Муниципальное общеобразовательное бюджетное учреждение. Гимназия № 44 г. Сочи. . Учитель физики Руденко Жанетта Дмитриевна, первая квалификационная ...
Световые кванты. Действие света

Световые кванты. Действие света

Тема. :. . Рейтинговая контрольная работа по теме:. . «Световые кванты. Действие света». Цель:. Проверить усвоение знания по данной теме, умение ...
Свет как источник информации человека об окружающем мире. Источники света

Свет как источник информации человека об окружающем мире. Источники света

«Свет как источник информации человека об окружающем мире. Источники света». в программе А.Е Гуревича, Д. А. Исаева, Л. С. Понтак, опубликованной ...
Прямолинейное распространение света

Прямолинейное распространение света

Урок физики в 7 классе на тему:. . «Прямолинейное распространение света». Образовательная цель урока: изучение закона прямолинейного распространения ...
Преломление света

Преломление света

Урок физики по теме "Преломление света". Цели урока:. Учебные: создать условия для усвоения  понятия «Преломление света». . Формирование материалистических ...
Законы распространения света

Законы распространения света

Тема:. Законы распространения света. Цель. :. формирование навыков практического применения законов прямолинейного распространения и отражения ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 января 2015
Категория:Физика
Содержит:51 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации