Презентация на тему Звук


Здесь Вы можете скачать готовую презентацию на тему Звук. Предмет презентации: Физика. Красочные слайды и илюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого презентации воспользуйтесь плеером, или если вы хотите скачать презентацию - нажмите на соответствующий текст под плеером. Презентация содержит 54 слайда.

Слайды презентации

Слайд 1
Звук Автор : Светлана Еженкова 10 «В» класс ГОУ СШ № 332 С-Петербург Учитель: Татьяна Викторовна Романова
Слайд 2
Звук  Определение  Шкала звуковых частот  Виды звуков  Диапазон частот  Источники  Приемники  Скорость звука в разных средах  Сравнение звуковых и электромагнитных волн  Характеристики звука  Свойства звука
Слайд 3
 Колеблющаяся поверхность источника звука вызывает изменения давления (плотности) окружающего воздуха , распространяющиеся во все стороны в виде чередующихся областей повышенного и пониженного давления, называемых звуковыми волнами.  Достигнув уха , звуковые волны вызывают механические колебания барабанной перепонки, которые затем преобразуются в электрические сигналы нервной системы и передаются в головной мозг , интерпретирующий их как звуки.  Звук - это воспринимаемые органами слуха колебания частиц среды.
Слайд 4
Для возникновения звукового ощущения необходимы:  Источник звука  Среда для распространен ия звука  Приёмник звука
Слайд 5
Звуковая шкала  Инфразвук  Звук  Ультразвук  Гиперзвук  0,001 – 20 Гц  20 – 20 000 Гц  20 000 – 10 9 Гц  10 9 – 10 13 Гц 0 20 20000 10 9 10 13 Инфразвук Звук Ультразвук Гиперзвук ν , Гц
Слайд 6
Виды звуковых волн  Продольная волна (в твердых, жидких и газообразных средах) :   Поперечная волна (только в твердых средах) :
Слайд 7
Виды звуков  Чистый звук, тон (гармоническое колебание с одной частотой)  Сложный звук, звучание (колебание, разлагаемое на основной тон и обертоны)  Воющий тон – звук, частота которого периодически изменяется около среднего значения  Шум (набор частот, непрерывно заполняющих некоторый интервал )
Слайд 8
Диапазон воспринимаемых частот ( Гц )  Человек  Птицы  Собака  Кошка  Летучая мышь  Бабочка  Дельфин  20 – 20000  20 – 20000  200 – 160000  240 – 180000  2000 – 180000  10000 – 180000  60 – 200000
Слайд 9
Диапазоны частот слышимых звуков для людей разного возраста
Слайд 10
Частота, соответствующая разным нотам первой октавы
Слайд 11
Источники звука – тела или системы тел, движения которых относительно окружающей среды периодически или импульсивно (резко) нарушают её равновесное состояние. Источники звука
Слайд 12
Классификации источников звука  По способу возбуждения звуковой волны:  Колебательные системы ( струны, пластины)  Автоколебательные системы (музыкальные инструменты, голосовой аппарат человека, электрический звонок, сигналы на транспорте)  Источники звукового вращения (винты самолета, корабля, вертолета)  Источники вихревого звука (свист растяжки, звук провода, обдуваемого ветром, свист хлыста)  Электроакустический.
Слайд 13
Классификации источников звука  По происхождению ( естественные и искусственные)  По закону колебаний (периодические, импульсивные, гармонические, негармонические)
Слайд 14
Приемники звуковых волн Искусственные : Микрофон Естественные : Ухо Обладает высокой чувствительностью (  p =10 -6 Па) и избирательностью (например, дирижер улавливает звуки отдельных инструментов оркестра).
Слайд 15
Строение человеческого уха 1.Слуховой канал 2.Барабанная перепонка 3.Молот 4.Наковальня 5.Стремечко 6.Овальное окно 7.Евстахиева труба 8.Улитка 9.Слуховой нерв
Слайд 16
Скорость звука в твёрдых телах
Слайд 17
Скорость звука в жидкостях
Слайд 18
Скорость звука в газах (при 0 ° С)
Слайд 19
Сравнение звуковых и электромагнитных волн  Механические  Для распространения нуждаются в среде  υ в воздухе ≈ 340 м/с  Поперечные или продольные  Воспринимаются непосредственно органом слуха  Электромагнитные  Могут распространяться и в вакууме  υ в воздухе ≈ 3 · 10 8 м/с  Поперечные  Для восприятия необходимо преобразовать в звук, ток, цвет и т.д.
Слайд 20
Физические характеристики звука Объективные  Звуковое давление  Интенсивность ( сила звука)  Амплитуда  Частота  Длина волны  Период  Скорость  Субъективные  Громкость  Высота  Тембр  Длительность
Слайд 21
Человеческое ухо способно воспринимать волны, в которых звуковое давление изменяется в десять миллионов раз!  Порог слышимости соответствует значению p 0 порядка 10 –10 p атм. , то есть 10 –5 Па. При таком слабом звуке молекулы воздуха колеблются в звуковой волне с амплитудой всего лишь 10 –7 см!  «Если бы порог слышимости был порядка 10 -6 Па, мы слышали бы броуновское движение. Природа защитила нас от непрерывных звуковых перегрузок, вызываемых «толкотней» молекул воздуха с пылинками. Вот когда бы мы всем миром боролись за чистоту воздуха». Т.В. Романова  Болевой порог соответствует значению p 0 порядка 10 –3 p атм. или 100 Па .
Слайд 22
Порог слышимости, болевой порог и частота звука
Слайд 23
Интенсивность звука, воспринимаемая человеком Минимальная  10 -12 Вт/м 2 Максимальная (вызывает болевые ощущения)  ≈ 100 Вт/м 2 Отличие на 14 порядков!
Слайд 24
Интенсивность и уровень интенсивности звука какая энергия, переносится звуковой волной через единицу площади поверхности за единицу времени если интенсивность I изменяется на порядок (в 10 раз), то уровень интенсивности при этом изменяется на единицу . Формула Смысл Единица измерения На практике неудобно пользоваться, так как большой разброс значений ( 10 14 ! ) На практике удобно, так как шкала значений сужается
Слайд 25
Сравнение шкал
Слайд 26
Уровни интенсивности звука  10 дБ шелест листвы на дереве ;  20 дБ шорох падающей листвы ;  30 дБ предельно допустимый уровень шума в квартире ночью ( холодильник );  50 дБ негромкий разговор ;  70 дБ пишущая машинка на расстоянии 1м ;  80 дБ шум работающего двигателя ;  90 дБ тяжёлый грузовик на расстоянии 5м ;  100 дБ отбойный молоток ;  110 дБ дискотека ;  120 дБ работающий трактор на расстоянии 1 м  140 дБ болевой порог.
Слайд 27
Частота звука  Частота – это физическая величина численно равная отношению числа полных колебаний ко времени, за которое эти колебания были совершены  Частота показывает сколько колебаний совершается за единицу времени
Слайд 28
Период звуковых колебаний Период колебаний – это физическая величина численно равная отношению времени полных колебаний к их числу. Период показывает за какое время совершается одно колебание.
Слайд 29
Скорость звука – скорость распространения звуковых волн в среде. υ – скорость звука λ – длина волны v – частота звука Т – период звуковых колебаний
Слайд 30
Длина волны – это расстояние между точками волны, колеблющимися одинаково (с разностью фаз в 2 π ). λ – длина волны
Слайд 31
Диапазон длин звуковых волн в различных средах
Слайд 32
Громкость звука  Громкость – это именно субъективная характеристика, так как она зависит не только от звукового давления ( амплитуды колебаний ), но и от  частотного состава звука  формы звуковых колебаний  условий, в которых находится слушатель  времени, в течение которого он слушает звук.
Слайд 33
Громкость звука и уровень громкости звука Громкость  Абсолютная величина  Единица измерения – сон  1 сон — это громкость непрерывного чистого синусоидального тона частотой 1 кГц, создающего звуковое давление 2 мПа. Уровень громкости  Относительная величина  Единица измерения – фон  1 фон численно равен уровню звукового давления (в децибелах — дБ), создаваемого чистым (синусоидальным) тоном частотой 1 кГц такой же громкости, как и измеряемый звук (равногромким данному звуку)
Слайд 34
Высота звука  Высота звука – это именно субъективная характеристика, так как она зависит не только от частоты основного тона , но и от  интенсивности звука  общей формы звуковой волны  ее сложности (форма периода)  Высота звука может определяться слуховой системой для сложных сигналов, но только в том случае, если основной тон сигнала является периодическим (в звуке хлопка или выстрела тон не является периодическим, и слух не способен оценить его высоту)  Высота звука измеряется в мелах.  Один мел равен ощущаемой высоте звука частотой 1000 Гц при уровне 40 дБ (иногда для оценки высоты тона используется другая единица, барк = 100 мел).
Слайд 35
Тембр  Тембр звука зависит от наличия в нем "частичных" тонов (обертонов, гармоник), а также от их соотношения по громкости и присутствию или отсутствию в спектре звучания основного тона. Самая низкочастотная синусоидальная составляющая сложного звука,(обычно наиболее громкая) называется основной составляющей (основным тоном).
Слайд 36
Одна и та же высота, но различные тембры Относительные интенсивности гармоник в спектре звуковых волн, испускаемых камертоном (1), пианино (2) и низким женским голосом (альт) (3), звучащими на ноте «ля» контроктавы ( v = 220 Гц). По оси ординат отложены относительные интенсивности .
Слайд 37
Одна и та же высота, но различные тембры
Слайд 38
Тона и обертона
Слайд 39
Свойства звука  Отражение  Преломление  Поглощение  Дифракция  Интерференция
Слайд 40
Взаимодействие звуковой волны с преградой  Отражение (размер преграды больше длины волны)  Огибание (дифракция) (размер преграды сравним или меньше длины волны)  Преломление  Поглощение
Слайд 41
Опыт по отражению звука  Звук отражается от любой поверхности,  Вогнутая поверхность сосредотачивает звук.  Поставьте на стол глубокую тарелку на дно положите источник тихого звука (тикающие часы или таймер)  Другую тарелку держите около уха так, как показано на фотографии.  Если положение часов, уха и тарелок найдено верно, то вы услышите тиканье часов, словно оно исходит от той тарелки, которую вы держите около уха.
Слайд 42
Отражение звука  Если местность между источником звука и отражающим препятствием имеет углубление, то это способствует возникновению эха, если же наоборот - выпуклой, то эха не будет.
Слайд 43
Пример отражения звуковых волн от твердых поверхностей - эхо .  Наиболее отчетливое эхо возникает от резкого отрывистого звука, человеческий голос менее пригоден для этого, особенно мужской, высокие женские и детские голоса дают более отчетливое эхо. Известные эхо:  в замке Вудсток в Англии эхо отчетливо повторяет 17 слогов,  развалины замка Деренбург возле Гальберштадта давали 27-сложное эхо, до тех пор, пока одна из стен не была взорвана.  Скалы, раскинутые кругом возле Адерсбаха в Чехословакии, повторяют в определенном месте троекратно 7 слогов, но в нескольких шагах от этой точки даже выстрел не производит никакого эха.
Слайд 44
Реверберация – (от латинского reverberatus, «повторный удар») — это процесс продолжения звучания после окончания звукового импульса или колебания благодаря многократным отражениям звуковых волн от разных поверхностей  Наблюдается в закрытых помещениях, пещерах, узких ущельях, иногда на стадионах, городских площадях  Воспринимается слитно, если промежутки между отраженными сигналами менее 100 мс.  При увеличении интервала между приходящими звуками свыше 100 мс субъективное восприятие человека отмечает уже раздельное эхо.  Проявляется в более сочном гулком объемном звучании, обычно более приятном для восприятия, чем исходный «сухой» звук.
Слайд 45
Дифракция звука  Образование тени в случае световых волн — часто наблюдаемое и привычное явление. Иначе обстоит дело со звуковыми волнами. От них очень трудно заслониться. Мы слышим звук из-за угла дома или стоя за забором, за деревом и т. п. Почему эти препятствия не отбрасывают «звуковой тени»? Длина звуковой волны в воздухе при частоте 1000 Гц равна 33,7 см, а при частоте 100 Гц она составляет уже 3,37 м. Таким образом, размеры обычно окружающих нас предметов (за исключением больших домов) отнюдь не велики по сравнению с длиной звуковой волны. Позади малого препятствия тени нет
Слайд 46
Интерференция гармонических волн разных частот – биения  Даже если частота биений очень мала, человеческое ухо способно уловить периодическое нарастание и убывание громкости звука. Поэтому биения являются весьма чувствительным методом настройки в звуковом диапазоне.  Если настройка не точна, то разность частот можно определить на слух, подсчитав число биений за одну секунду.  В музыке на слух воспринимаются и биения высших гармонических составляющих, что применяется при настройке фортепиано. • Когда две частоты мало различаются, возникают так называемые биения. • Биения — это изменения амплитуды звука, происходящие с частотой, равной разности исходных частот.
Слайд 47
Интерференция звуковых волн – наложение двух или большего числа волн  Стоячие волны – результат наложения двух волн одинаковой амплитуды, фазы и частоты, распространяющихся в противоположных направлениях.  Амплитуда в пучностях стоячей волны равна удвоенной амплитуде каждой из волн.  Поскольку интенсивность волны пропорциональна квадрату ее амплитуды, это означает, что интенсивность в пучностях в 4 раза больше интенсивности каждой из волн или же в 2 раза больше суммарной интенсивности двух волн.  Здесь нет нарушения закона сохранения энергии, поскольку в узлах интенсивность равна нулю.
Слайд 48
Происхождение слов  Ультразвук ( от лат. ультра – сверх )  Инфразвук ( от лат. инфра – под )  Гиперзвук ( от греч. гипер – над )  Акустика ( от греческого akustikos – слуховой, слышимый )
Слайд 49
Частоты колебаний, опасные для живых организмов Частота, Гц  0,02  0,6  1-3 (дельта-ритм мозга)  5-7 (тета -ритм мозга)  8-12 (альфа-ритм мозга)  5-17 (бета-ритм мозга)  40-70  1000-12000 Отрицательный эффект  Увеличение времени ответной реакции  Стойкое психическое торможение  Стресс  Стресс, умственное утомление  Эмоциональное возбуждение  Ухудшение процессов обмена, беспокойство  Снижение слуха
Слайд 50
Инфразвук Действия инфразвука  Головные боли  Осязаемое движение барабанных перепонок  Вибрации внутренних органов  Появление чувства страха  Нарушение функции вестибулярного аппарата Борьба с инфразвуком:  Повышение быстроходности машин  Повышение жесткости конструкций  Устранение низкочастотных вибраций  Установка глушителей
Слайд 51
Область ультразвуковых частот  Низкие ( 1 ,5 · 10 4 – 10 5 Гц ) ;  Средние ( 10 5 – 10 7 Гц ) ;  Высокие ( 10 7 – 10 9 Гц ) . 1 ,5 · 10 4 10 5 10 7 10 9 Низкие Средние Высокие ν , Гц
Слайд 52
Защита от ультразвука  Изготовление оборудования, излучающего ультразвук, в звукоизолирующем исполнении   Устройство экранов ( сталь, дюралюминий, оргстекло)  Размещение ультразвуковых установок в специальных помещениях  Применение индивидуальных защитных средств.
Слайд 53
Шум Ущерб здоровью  Глухота  Психические расстройства  Повышение артериального давления  Уменьшение способности сосредотачиваться  Раздражение  Усталость или истощение  Боли в желудке  Бессонница  Головокружение Методы борьбы  Уменьшение шума в источнике его возникновения (точность изготовления узлов, замена стальных шестерен пластмассовыми и т.д.).  Звукопоглощение (применение материалов из минерального войлока, стекловаты, поролона и т.д.).  Звукоизоляция. Звукоизолирующие конструкции изготавливаются из плотного материала (металл, дерево, пластмасса).  Установка глушителей шума.  Рациональное размещение цехов и оборудования, имеющих интенсивные источники шума.   Зеленые насаждения (уменьшают шум на 10 – 15 дБ).  Индивидуальные средства защиты (вкладыши, наушники, шлемы).
Слайд 54
Использованная литература 1. А. П. Рыженков. Физика, человек, окружающая среда. 9 класс. Москва, «Просвещение», 2001. 2. Т. И.Трофимова. Физика в таблицах и формулах. Москва, «Дрофа», 2004. 3. Физика .Справочник школьника и студента.Под редакцией Р. Гёбеля. Москва, «Дрофа», 2000. 4. Физическая энциклопедия Москва, «Большая Российская Энциклопедия», 1994. 5. Х. Кухлинг. Справочник по физике. Москва, «Мир», 1982. 6. А. Г. Чертов. Физические величины. Москва, «Высшая школа»,1990. 7. И. Г .Хорбенко. Звук, ультразвук, инфразвук. Москва, «Знание», 1985. 8. С. А. Чандаева. Физика и человек. Москва, «Аспект Пресс»,1994.

Другие презентации по физике



  • Яндекс.Метрика
  • Рейтинг@Mail.ru