Презентация "Жизнь во вселенной" (9 класс) по астрономии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33

Презентацию на тему "Жизнь во вселенной" (9 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Астрономия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 33 слайд(ов).

Слайды презентации

Жизнь и разум во Вселенной
Слайд 1

Жизнь и разум во Вселенной

Вступление. Нет ничего более волнующего, чем поиски жизни и разума во Вселенной. Уникальность земной биосферы и человеческого интеллекта бросает вызов нашей веры в единство природы. Человек не успокоится, пока не разгадает загадку своего происхождения. На этом пути необходимо пройти три важные ступе
Слайд 2

Вступление

Нет ничего более волнующего, чем поиски жизни и разума во Вселенной. Уникальность земной биосферы и человеческого интеллекта бросает вызов нашей веры в единство природы. Человек не успокоится, пока не разгадает загадку своего происхождения. На этом пути необходимо пройти три важные ступени: узнать тайну рождения Вселенной, решить проблему происхождения жизни и понять природу разума. В своем реферате я ставлю перед собой цель узнать, что во Вселенной мы не одиноки. Мне хочется узнать о далеких космических мирах, о Вселенной. На мой взгляд, самое главное в астрономии узнать, как устроен мир, есть ли жизнь на других планетах, одиноки ли мы в безбрежной Вселенной или где-то существует жизнь, как и наша?

Возникновение разума
Слайд 3

Возникновение разума

Возникновение разума должно быть теснейшим образом связано с коренным улучшением и усовершенствованием способов обмена информацией между отдельными особями. Поэтому для истории возникновения разумной жизни на Земле возникновение языка имело решающее значение. Можем ли мы, однако, такой процесс счита
Слайд 4

Возникновение разума должно быть теснейшим образом связано с коренным улучшением и усовершенствованием способов обмена информацией между отдельными особями. Поэтому для истории возникновения разумной жизни на Земле возникновение языка имело решающее значение. Можем ли мы, однако, такой процесс считать универсальным для эволюции жизни во всех уголках Вселенной? Скорее всего - нет! Ведь в принципе при совершенно других условиях средством обмена информацией между особями могли бы стать не продольные колебания атмосферы (или гидросферы), в которой живут эти особи, а нечто совершенно другое.

Уже давно предпринимаются попытки обнаружить и установить контакт с другими цивилизациями. В 1974 году в США была запущена автоматическая межпланетная станция “Пионер-10”. Внутри станции заложена стальная пластинка с выгравированными на ней рисунком и символами, которые дают минимальную информацию о
Слайд 5

Уже давно предпринимаются попытки обнаружить и установить контакт с другими цивилизациями. В 1974 году в США была запущена автоматическая межпланетная станция “Пионер-10”. Внутри станции заложена стальная пластинка с выгравированными на ней рисунком и символами, которые дают минимальную информацию о нашей земной цивилизации. Это изображение составлено таким образом, чтобы разумные существа, нашедшие его, смогли определить положение Солнечной системы в нашей Галактике, догадались бы о нашем виде и, возможно, намерениях. Но конечно внеземная цивилизация имеет гораздо больше шансов обнаружить нас на Земле, чем найти “Пионер-10”.

Появление жизни на Земле
Слайд 6

Появление жизни на Земле

В настоящее время жизнь определяется не через внутреннее строение вещества, которые ей присущи, а через ее функции: “управляющая система”, включающая в себя механизм передачи наследственной информации, обеспечивающей сохранность последующим поколениям. Тем самым благодаря неизбежным помехам при пере
Слайд 7

В настоящее время жизнь определяется не через внутреннее строение вещества, которые ей присущи, а через ее функции: “управляющая система”, включающая в себя механизм передачи наследственной информации, обеспечивающей сохранность последующим поколениям. Тем самым благодаря неизбежным помехам при передаче такой информации наш молекулярный комплекс (организм) способен к мутациям, а, следовательно, к эволюции. Возникновению живого вещества на Земле (и, как можно судить по аналогии, на других планетах) предшествовала довольно длительная и сложная эволюция химического состава атмосферы, в конечном итоге приведшая к образованию ряда органических молекул. Эти молекулы впоследствии послужили как бы “кирпичиками” для образования живого вещества.

Надо еще раз отметить, что центральная проблема возникновения жизни на Земле - это объяснение качественного скачка от “неживого” к “живому” - все еще далека от ясности. Недаром один из основоположников современной молекулярной биологии профессор Крик на Бюраканском симпозиуме по проблеме внеземных ц
Слайд 8

Надо еще раз отметить, что центральная проблема возникновения жизни на Земле - это объяснение качественного скачка от “неживого” к “живому” - все еще далека от ясности. Недаром один из основоположников современной молекулярной биологии профессор Крик на Бюраканском симпозиуме по проблеме внеземных цивилизаций в сентябре 1971 года сказал: “Мы не видим пути от первичного бульона до естественного отбора. Можно прийти к выводу, что происхождение жизни - чудо, но это свидетельствует только о нашем незнании”

Поиски жизни в Солнечной системе
Слайд 9

Поиски жизни в Солнечной системе

ЛУНА — единственное небесное тело, где смогли побывать земляне, грунт которого подробно исследован в лаборатории. Никаких следов органической жизни на Луне не найдено.
Слайд 10

ЛУНА — единственное небесное тело, где смогли побывать земляне, грунт которого подробно исследован в лаборатории. Никаких следов органической жизни на Луне не найдено.

На ближайшей к Солнцу маленькой планете МЕРКУРИЙ ещё не побывали ни космонавты, ни автоматические станции. Но люди кое-что знают о ней благодаря исследованиям с Земли и с пролетавшего вблизи Меркурия американского аппарата “Маринер–10” (1974 и 1975 гг.). Условия там ещё хуже, чем на Луне. Атмосферы
Слайд 11

На ближайшей к Солнцу маленькой планете МЕРКУРИЙ ещё не побывали ни космонавты, ни автоматические станции. Но люди кое-что знают о ней благодаря исследованиям с Земли и с пролетавшего вблизи Меркурия американского аппарата “Маринер–10” (1974 и 1975 гг.). Условия там ещё хуже, чем на Луне. Атмосферы нет, а температура поверхности меняется от –170 до 450 С. Под грунтом температура в среднем составляет около 80 С, причём с глубиной она, естественно, возрастает.

ВЕНЕРУ в недавнем прошлом астрономы считали почти точной копией молодой Земли. Увы, из-за близости к Солнцу Венера совсем не похожа на Землю. Словом, тоже не лучшее место для жизни.
Слайд 12

ВЕНЕРУ в недавнем прошлом астрономы считали почти точной копией молодой Земли. Увы, из-за близости к Солнцу Венера совсем не похожа на Землю. Словом, тоже не лучшее место для жизни.

МАРС не без оснований считался пригодной для жизни планетой. Хотя климат там очень суровый (летним днём температура составляет около 0 С, ночью –80 С, а зимой доходит до –120 С), но всё же это не безнадёжно плохо для жизни: существует же она в Антарктиде и на вершинах Гималаев. Однако на Марсе ес
Слайд 13

МАРС не без оснований считался пригодной для жизни планетой. Хотя климат там очень суровый (летним днём температура составляет около 0 С, ночью –80 С, а зимой доходит до –120 С), но всё же это не безнадёжно плохо для жизни: существует же она в Антарктиде и на вершинах Гималаев. Однако на Марсе есть ещё одна проблема — крайне разряжённая атмосфера, в 100 раз менее плотная, чем на Земле. Она не спасает поверхность Марса от губительных ультрафиолетовых лучей Солнца и не позволяет воде находиться в жидком состоянии. На Марсе вода может существовать только в виде пара и льда.

На основании результатов компьютерного моделирования ученые выдвинули гипотезу о том, что полярные области Марса могут представлять собой покрытые слоем льда водоемы, способные приютить жизнь.
Слайд 14

На основании результатов компьютерного моделирования ученые выдвинули гипотезу о том, что полярные области Марса могут представлять собой покрытые слоем льда водоемы, способные приютить жизнь.

ПЛАНЕТЫ-ГИГАНТЫ. Климат Юпитера, Сатурна, Урана и Нептуна совершенно не соответствует нашим представлениям о комфорте: очень холодно, ужасный газовый состав (метан, аммиак, водород и т. д.), практически нет твёрдой поверхности — лишь плотная атмосфера и океан жидких газов. Юпитер
Слайд 15

ПЛАНЕТЫ-ГИГАНТЫ. Климат Юпитера, Сатурна, Урана и Нептуна совершенно не соответствует нашим представлениям о комфорте: очень холодно, ужасный газовый состав (метан, аммиак, водород и т. д.), практически нет твёрдой поверхности — лишь плотная атмосфера и океан жидких газов.

Юпитер

Сатурн. Кольца Сатурна в цвете
Слайд 16

Сатурн

Кольца Сатурна в цвете

Уран
Слайд 17

Уран

Нептун
Слайд 18

Нептун

СПУТНИКИ ПЛАНЕТ И КОМЕТЫ. Серьёзной надежды обнаружить жизнь на этих телах не было никогда, хотя исследование на них органических соединений как предшественников жизни представляет особый интерес. Европа, спутник Юпитера
Слайд 19

СПУТНИКИ ПЛАНЕТ И КОМЕТЫ. Серьёзной надежды обнаружить жизнь на этих телах не было никогда, хотя исследование на них органических соединений как предшественников жизни представляет особый интерес.

Европа, спутник Юпитера

Условия для жизни в космосе
Слайд 20

Условия для жизни в космосе

В космосе мы встречаем широкий спектр физических условий: температура вещества меняется от 3—5 К до 107—108 К, а плотность — от 10-22 до 1018 кг/см3. Среди столь большого разнообразия нередко удаётся обнаружить места (например, межзвёздные облака), где один из физических параметров с точки зрения зе
Слайд 21

В космосе мы встречаем широкий спектр физических условий: температура вещества меняется от 3—5 К до 107—108 К, а плотность — от 10-22 до 1018 кг/см3. Среди столь большого разнообразия нередко удаётся обнаружить места (например, межзвёздные облака), где один из физических параметров с точки зрения земной биологии благоприятствует развитию жизни. Но лишь на планетах могут совпасть все параметры, необходимые для жизни.

Поиск внеземных цивилизаций
Слайд 22

Поиск внеземных цивилизаций

Как найти братьев по разуму? Стратегия поиска зависит от того, как люди представляют себе возможности и желания этих самых братьев.
Слайд 23

Как найти братьев по разуму? Стратегия поиска зависит от того, как люди представляют себе возможности и желания этих самых братьев.

Связь с внеземными цивилизациями
Слайд 24

Связь с внеземными цивилизациями

Для беспроводной связи на земле в основном используют радио. Поэтому главные усилия сейчас направлены на поиски сигналов внеземных цивилизаций (ВЦ) в радиодиапазоне. Но ведутся они и в других диапазонах излучения. За последние 20 лет было проведено несколько экспериментов по поиску лазерных сигналов
Слайд 25

Для беспроводной связи на земле в основном используют радио. Поэтому главные усилия сейчас направлены на поиски сигналов внеземных цивилизаций (ВЦ) в радиодиапазоне. Но ведутся они и в других диапазонах излучения. За последние 20 лет было проведено несколько экспериментов по поиску лазерных сигналов в оптическом диапазоне.

Проекты изучения внеземных цивилизаций Озма и Серендип. Наблюдения начались в 1960 г., когда Фрэнсис Дрейк попытался с помощью антенны диаметром 26 метров принять сигналы от звёзд  Кита и  Эридана. Его работа называлась “проект ОЗМА”. В 1992 г. Национальное управление по аэронавтике и исследованию
Слайд 26

Проекты изучения внеземных цивилизаций Озма и Серендип

Наблюдения начались в 1960 г., когда Фрэнсис Дрейк попытался с помощью антенны диаметром 26 метров принять сигналы от звёзд  Кита и  Эридана. Его работа называлась “проект ОЗМА”. В 1992 г. Национальное управление по аэронавтике и исследованию космического пространства США (НАСА) начало проект СЕРЕНДИП (SERENDIP, Search for Extraterrestrial Radio Emission from nearby Developed Intelligent Populations — “Поиск внеземного радиоизлучения от соседних развитых цивилизаций”).

Чаша в Аресибо на острове Пуэрто-Рико

Показание приборов
Слайд 27

Показание приборов

Язык братьев по разуму. Контакты с другими цивилизациями наверняка будут связаны с очень большими трудностями, а могут вообще оказаться бесплодными. Ведь до сих пор не почитаны некоторые тексты на мёртвых языках Земли — своеобразные послания из глубины веков. Ещё больших трудностей следует ожидать в
Слайд 28

Язык братьев по разуму

Контакты с другими цивилизациями наверняка будут связаны с очень большими трудностями, а могут вообще оказаться бесплодными. Ведь до сих пор не почитаны некоторые тексты на мёртвых языках Земли — своеобразные послания из глубины веков. Ещё больших трудностей следует ожидать в том случае, если нам удастся случайно подслушать радиосообщения из иных миров, предназначенные для внутреннего пользования, например, обрывки телепередач или позывные космических маяков.

1999,12th Jun,UK,Wiltshire,East Field nr Alton Barnes. 1999,3rd Aug,UK,Hampshire,Henwood
Слайд 29

1999,12th Jun,UK,Wiltshire,East Field nr Alton Barnes

1999,3rd Aug,UK,Hampshire,Henwood

2002,4th Jul,UK,Wiltshire,Stonehenge. 2002,1st Jul,UK,Wiltshire,East Kennett
Слайд 30

2002,4th Jul,UK,Wiltshire,Stonehenge

2002,1st Jul,UK,Wiltshire,East Kennett

Формула Дрейка. Френсис Дрейк предложил простую формулу для оценки числа разумных сообществ в нашей Галактике, готовых вступить с нами в контакт: n = N * P1 * P2 * P3 * P4 * t / T, где n - число цивилизаций в Галактике, готовых к радиоконтакту; N - число звезд в Галактике; P1 - доля звезд, имеющих п
Слайд 31

Формула Дрейка

Френсис Дрейк предложил простую формулу для оценки числа разумных сообществ в нашей Галактике, готовых вступить с нами в контакт: n = N * P1 * P2 * P3 * P4 * t / T, где n - число цивилизаций в Галактике, готовых к радиоконтакту; N - число звезд в Галактике; P1 - доля звезд, имеющих планетные системы; P2 - доля планетных систем, в которых возникла жизнь; P3 – доля биосфер, в которых жизнь достигла уровня разума; P4 - доля разумных сообществ, достигающих технического уровня нашей цивилизации (или более высокого) и желающих установить контакт; t - среднее время существования технической цивилизации; T - возраст Галактики.

Пока нам с относительной точностью известны лишь три сомножителя в этой формуле: возраст Галактики T ~ 10^10 лет, количество в ней звезд N ~ 10^11 и частота формирования планетных систем P1 ~ 0,1. Остальные сомножители я оценила по своему: P2 ~ 1, P3 ~ 0,1, P4 ~ 1, t ~ 100 лет. Подставив в формулу Д
Слайд 32

Пока нам с относительной точностью известны лишь три сомножителя в этой формуле: возраст Галактики T ~ 10^10 лет, количество в ней звезд N ~ 10^11 и частота формирования планетных систем P1 ~ 0,1. Остальные сомножители я оценила по своему: P2 ~ 1, P3 ~ 0,1, P4 ~ 1, t ~ 100 лет. Подставив в формулу Дрейка эти значения, мы видим, что несколько цивилизаций в Галактике сейчас готовы к контакту с нами. Поэтому есть смысл приложить усилия и установить, наконец, этот контакт.

Заключение. Из данного реферата можно сделать вывод, что до сих пор ученые всего мира не доказали, “одиноки ли мы во Вселенной?” и есть ли разумная жизнь на других планетах. Мы нередко задаемся весьма общими вопросами, касающимися существования и свойств Вселенной в целом. Но если поставлен вопрос,
Слайд 33

Заключение

Из данного реферата можно сделать вывод, что до сих пор ученые всего мира не доказали, “одиноки ли мы во Вселенной?” и есть ли разумная жизнь на других планетах. Мы нередко задаемся весьма общими вопросами, касающимися существования и свойств Вселенной в целом. Но если поставлен вопрос, это еще не означает, что на него может быть получен ответ.

Список похожих презентаций

Жизнь во вселенной

Жизнь во вселенной

Целью курса является:. - сформировать у учащихся научное мировоззрение и представление о современной естественно-научной картине мира. Форма проведения ...
Чёрные дыры вселенной

Чёрные дыры вселенной

Состав Вселенной. Тёмная материя— форма материи, которая не испускает электромагнитного излучения и не взаимодействует с ним. Это свойство данной ...
Строение и эволюция вселенной

Строение и эволюция вселенной

Вселенная – это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает ...
Строение и эволюция вселенной

Строение и эволюция вселенной

Содержание. Космология Типы галактик Скопления галактик Звёздные скопления Межзвёздное вещество Красное смещение Эффект Доплера Закон Хаббла Теория ...
Строение вселенной

Строение вселенной

Все́світ — весь матеріальний світ, різноманітний за формами, що їх приймає матерія та енергія, включаючи усі галактики, зорі, планети та інші космічні ...
Путешествие во вселенной

Путешествие во вселенной

Размеры глаз превышают диаметр Земли как минимум в четыре раза. По словам исследователей, яркие области на Солнце представляется возможным наблюдать ...
Происхождение и развитие вселенной

Происхождение и развитие вселенной

Теории Происхождения Вселенной. Креационизм Космологическая модель Канта Модель Вселенной Эйнштейна (статическая Вселенная) Большой Взрыв Большой ...
Дороги в просторы вселенной

Дороги в просторы вселенной

И наши тем награждены усилья, Что, поборов бесправие и тьму, Мы отковали пламенные крылья Себе стране и веку своему Н.Грибачев. Когда в космос был ...
Исследования вселенной - наса

Исследования вселенной - наса

О, сколько нам открытий чудных Готовят просвещенья дух, И опыт, сын ошибок трудных, И гений, парадоксов друг (А.С.Пушкин). Космос это мир в целом, ...
Земля во вселенной

Земля во вселенной

Галактики- скопления звезд. Число наблюдаемых галактик около 10 млрд. Галактика, к которой принадлежит Земля, называется МЛЕЧНЫЙ ПУТЬ. Количество ...
Жизнь в космосе

Жизнь в космосе

Ежегодно 12 апреля в России и в странах всего мира отмечают Международный День космонавтики - первый полет человека в космос - космонавта Юрия Гагарина. ...
Есть ли разум во вселенной

Есть ли разум во вселенной

Какова наша Галактика: Солнечная система: Планеты Земной группы; Планеты-гиганты; Малые тела Солнечной системы Какие бывают Галактики Есть ли условия ...
Есть ли разум во вселенной

Есть ли разум во вселенной

Какова наша Галактика: Солнечная система: Планеты Земной группы; Планеты-гиганты; Малые тела Солнечной системы Какие бывают Галактики Есть ли условия ...
Древнее представление о вселенной

Древнее представление о вселенной

Правильное понимание наблюдаемых небесных явлений пришло не сразу. Представители лучших умов человечества трудились долго и упорно в поисках истины. ...
Эволюция вселенной

Эволюция вселенной

Введение. Основная часть. Глава 1 Начало начал Глава 2 Теория эволюции Вселенной. Глава 3 Эволюция материи. Глава 4 Современные исследования. III. ...
Красота вселенной

Красота вселенной

Цель:. Используя материалы, полученные с помощью телескопа «Хабл», из других источников, убедиться в том , что Вселенная очень красива. Космический ...
Эволюция вселенной

Эволюция вселенной

Эволюция Вселенной и жизнь. Революционными вехами на пути развития астрономии были: обоснование идеи о шарообразности Земли, открытие Коперником гелиоцентрической ...
Методы изучения вселенной

Методы изучения вселенной

Как древние люди представляли себе Вселенную. Три слона на черепахе Утомительно стоят. На спине у них Земля, Окружила их змея. Земля - гора, Окруженная ...
Происхождение вселенной теория большого взрыва

Происхождение вселенной теория большого взрыва

История Вселенной согласно теории Большого взрыва. В нулевой момент времени Вселенная возникла из сингулярности. В течение первой миллионной доли ...
Модель расширяющейся вселенной

Модель расширяющейся вселенной

Зарождение модели, 1916 г. Модель Вселенной А. Эйнштейна стала первой космологической моделью, базирующейся на выводах общей теории относительности. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.