- Решения задач по теме «Призма»

Презентация "Решения задач по теме «Призма»" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14

Презентацию на тему "Решения задач по теме «Призма»" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 14 слайд(ов).

Слайды презентации

Презентация выполнена учителем математики МОУ «СОШ№6» п.Передового Ставропольского края Богдановской Валентиной Михайловной. УСТНЫЕ ЗАДАЧИ ПО ТЕМЕ "ПРИЗМА"
Слайд 1

Презентация выполнена учителем математики МОУ «СОШ№6» п.Передового Ставропольского края Богдановской Валентиной Михайловной

УСТНЫЕ ЗАДАЧИ ПО ТЕМЕ "ПРИЗМА"

Четырехугольная призма. Повтори формулы: Где a,b,c – длина, ширина и высота параллелепипеда, d- длина диагонали основания, D- диагональ призмы, d- диагональ основания, S- площадь основания, Q- площадь диагонального сечения, Sб- площадь боковой поверхности, β –угол между диагональю параллелепипеда и
Слайд 2

Четырехугольная призма

Повтори формулы:

Где a,b,c – длина, ширина и высота параллелепипеда, d- длина диагонали основания, D- диагональ призмы, d- диагональ основания, S- площадь основания, Q- площадь диагонального сечения, Sб- площадь боковой поверхности, β –угол между диагональю параллелепипеда и плоскостью основания

Ребро куба равно а. Найдите: Диагональ грани d= a√2 Диагональ куба D= a√3 Периметр основания P= 4a Площадь грани S=a2 Площадь диагонального сечения Q= a2√2 Площадь поверхности куба S= 6a2 Периметр и площадь сечения, проходящего через концы трех ребер, выходящих из одной вершины P= 3a√2. а
Слайд 3

Ребро куба равно а. Найдите: Диагональ грани d= a√2 Диагональ куба D= a√3 Периметр основания P= 4a Площадь грани S=a2 Площадь диагонального сечения Q= a2√2 Площадь поверхности куба S= 6a2 Периметр и площадь сечения, проходящего через концы трех ребер, выходящих из одной вершины P= 3a√2

а

Найдите основные элементы куба a , d, D, S, Q, d D
Слайд 4

Найдите основные элементы куба a , d, D, S, Q,

d D

β a b c S Q 7 8 4 12 24 6 5√3 17 26/√3 100√3 10 600 25√3 3 13/√3 13 300 60 169√3 25√2 168 10√3 20 48 17√2 120 289. Найдите основные элемента параллелепипеда
Слайд 5

β a b c S Q 7 8 4 12 24 6 5√3 17 26/√3 100√3 10 600 25√3 3 13/√3 13 300 60 169√3 25√2 168 10√3 20 48 17√2 120 289

Найдите основные элемента параллелепипеда

Дано: правильная призма, АВ=3см, АА1= 5см Найти: Диагональ основания 3√2см Диагональ боковой грани √34см Диагональ призмы √43см Площадь основания 9см2 Площадь диагонального сечения 15√2см2 Площадь боковой поверхности 60см2 Площадь поверхности призмы 78см2
Слайд 6

Дано: правильная призма, АВ=3см, АА1= 5см Найти: Диагональ основания 3√2см Диагональ боковой грани √34см Диагональ призмы √43см Площадь основания 9см2 Площадь диагонального сечения 15√2см2 Площадь боковой поверхности 60см2 Площадь поверхности призмы 78см2

Дано: правильная призма Sб=32см2 , Sполн= 40см2 Найти: высоту призмы. Решение : Площадь основания S=(40-32):2= 4см2 АВ= 2см Периметр основания Р=8см Высота призмы h= Sб: Р= 32:8 = 4см
Слайд 7

Дано: правильная призма Sб=32см2 , Sполн= 40см2 Найти: высоту призмы

Решение : Площадь основания S=(40-32):2= 4см2 АВ= 2см Периметр основания Р=8см Высота призмы h= Sб: Р= 32:8 = 4см

ТРЕУГОЛЬНАЯ, ШЕСТИУГОЛЬНАЯ И n-УГОЛЬНАЯ ПРИЗМЫ. Повтори формулы: Sб= РН Sп= Sб+2s Р = 3а Р = 6а. Для правильной треугольной призмы. Для произвольной призмы. Для правильной шестиугольной призмы
Слайд 8

ТРЕУГОЛЬНАЯ, ШЕСТИУГОЛЬНАЯ И n-УГОЛЬНАЯ ПРИЗМЫ

Повтори формулы: Sб= РН Sп= Sб+2s Р = 3а Р = 6а

Для правильной треугольной призмы

Для произвольной призмы

Для правильной шестиугольной призмы

Найдите неизвестные элементы правильной треугольной призмы по элементам, заданным в таблице. A B C
Слайд 9

Найдите неизвестные элементы правильной треугольной призмы по элементам, заданным в таблице.

A B C

A1 B1 C1. Расстояния между ребрами наклонной треугольной призмы равны: 2см, 3 см и 4см Боковая поверхность призмы- 45см2.Найдите ее боковое ребро. Решение: В перпендикулярном сечении призмы треугольник , периметр которого 2+3+4=9 Значит боковое ребро равно 45:9=5(см)
Слайд 10

A1 B1 C1

Расстояния между ребрами наклонной треугольной призмы равны: 2см, 3 см и 4см Боковая поверхность призмы- 45см2.Найдите ее боковое ребро.

Решение: В перпендикулярном сечении призмы треугольник , периметр которого 2+3+4=9 Значит боковое ребро равно 45:9=5(см)

Вычислите площадь боковой поверхности правильной треугольной призмы, если известно, что площадь сечения, проходящего через средние линии оснований, равна 25см2. Решение: МТКР – прямоугольник МТ= ½*АС, РМ = АА1 Площадь МТКР равна половине площади боковой грани Площадь боковой грани 50см2 Площадь боко
Слайд 11

Вычислите площадь боковой поверхности правильной треугольной призмы, если известно, что площадь сечения, проходящего через средние линии оснований, равна 25см2

Решение: МТКР – прямоугольник МТ= ½*АС, РМ = АА1 Площадь МТКР равна половине площади боковой грани Площадь боковой грани 50см2 Площадь боковой поверхности 50*3= 150(см2)

М Т Р К

Найдите площадь боковой поверхности правильной шестиугольной призмы, если дана площадь Q большего диагонального сечения. Решение: Площадь большего диагонального сечения Q =2aH aH = Q Площадь боковой поверхности равна 6*Q/2 = 3Q
Слайд 12

Найдите площадь боковой поверхности правильной шестиугольной призмы, если дана площадь Q большего диагонального сечения

Решение: Площадь большего диагонального сечения Q =2aH aH = Q Площадь боковой поверхности равна 6*Q/2 = 3Q

Через две неравные диагонали основания правильной 6-угольной призмы проведены диагональные сечения. Найдите отношение их площадей. Решение: Отношение площадей диагональных сечений равно отношению неравных диагоналей правильного 6-угольника, сторона которого а S1 : S2 = 2a :a√3 = 2 : √3
Слайд 13

Через две неравные диагонали основания правильной 6-угольной призмы проведены диагональные сечения. Найдите отношение их площадей.

Решение: Отношение площадей диагональных сечений равно отношению неравных диагоналей правильного 6-угольника, сторона которого а S1 : S2 = 2a :a√3 = 2 : √3

А1 В1 С1 D1 E1 F1 А В С E F
Слайд 14

А1 В1 С1 D1 E1 F1 А В С E F

Список похожих презентаций

ГИА-2012. Решение задач по теме "Чтение графиков функций"

ГИА-2012. Решение задач по теме "Чтение графиков функций"

График какой из приведенных ниже функций изображен на рисунке? Задание 17 (№ 197785). Задание 17 (№ 193087). Задание 17 (№ 197695). Задание 17 (№ ...
Алгоритм решения задач на пропорции

Алгоритм решения задач на пропорции

Эпиграф: «Математика обладает двумя великими сокровищами. Первое-это теорема Пифагора, второе-деление отрезка в крайнем и среднем отношении.» Иоганн ...
«Решение задач с помощью пропорций»

«Решение задач с помощью пропорций»

Найти значение Х: Х:3=4:6 5:Х=2:6 7:3=Х:18 Устная работа. Указать вид пропорциональной зависимости:. Какова зависимость пути от времени? Какова зависимость ...
«Решение задач по математике»

«Решение задач по математике»

10 февраля. В классе. Задача условие вопрос решение ответ. Быстро и правильно считать. Правильно записывать решение задачи. Кричать и сердиться, когда ...
«Олимпийский» задачник по математике

«Олимпийский» задачник по математике

Если вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи — решайте их Д. Пойа. Если мы действительно что-то ...
Графические приемы решения задач с параметрами

Графические приемы решения задач с параметрами

Решение уравнений и неравенств, содержащих параметры, является одним из самых трудных разделов элементарной математики. Для их решения обычно требуются ...
«Задачи по математике»

«Задачи по математике»

Успех каждого – это шаг к успеху всего класса. Реши примеры 5 ·8 5·5 4·6 8·8 25-5 36-6. 48-8 99-9 6·10 50·10 4·10 7·100. =40 =25 =24 =64 =20 =90 =60 ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
Вычитание. Решение задач с помощью действия вычитания

Вычитание. Решение задач с помощью действия вычитания

Определение целей урока. Чему должны научиться сегодня на уроке? Какими свойствами вычитания будем пользоваться? Что нужно будет знать, чтобы решить ...
Геометрическая экскурсия по теме "Круглые тела в архитектуре"

Геометрическая экскурсия по теме "Круглые тела в архитектуре"

Павловское начато строиться в 1777 году. Круг в Древней Греции считался венцом совершенства. Возможно, для того чтобы подчеркнуть совершенство природы ...
Бинарный урок математики и природоведения по теме "Итоговое повторение"

Бинарный урок математики и природоведения по теме "Итоговое повторение"

Итоговое повторение. Ну-ка, проверь дружок, Ты готов начать урок? Всё ль на месте, Всё ль в порядке, Ручка, книжка и тетрадка? Все ли правильно сидят? ...
Веселые задачки по математике

Веселые задачки по математике

Задача 1. Попугай, удав и мартышка вместе съели 50 бананов. Попугай съел 3 банана. Сколько процентов всех бананов съел попугай? Задача 1. Решение. ...
Алгоритм решения простых задач

Алгоритм решения простых задач

. ЗАДАЧА условие Вопрос, задание. Работа в парах. 1. Налетело 5 гусей-лебедей, подхватили и унесли братца Иванушку. 2. Печка испекла девять ржаных ...
Башни Кремля. Задачи по математике

Башни Кремля. Задачи по математике

Башни Кремля. Спасская башня считается самой красивой и стройной башней. Построена в 1491 году под руководством архитектора Пьетро Антонио Солари ...
Викторина по математике в 7 классе

Викторина по математике в 7 классе

14 декабря 2012г. Цели викторины: развивать логическое мышление учащихся; закрепить знания полученные на уроках математики; развивать умение быстро ...
Авторалли по городам математики

Авторалли по городам математики

Цель: Закрепить навык выполнения действий, возведения чисел в квадрат и куб, закрепить формулы пути и площади. Расширение кругозора учащихся, развитие ...
ГИА-2012. Решение планиметрических задач на нахождение углов геометрических фигур

ГИА-2012. Решение планиметрических задач на нахождение углов геометрических фигур

1 3 4 5 6 7 8 9 10 11. Вашему вниманию представлено двенадцать прототипов задачи № 11 Открытого банка заданий по математике. ГИА – 2012. Два острых ...
Аксиомы стереометрии Решение задач

Аксиомы стереометрии Решение задач

Через любые две точки пространства проходит единственная прямая. Через любые три точки пространства, не принадлежащие одной прямой, проходит единственная ...
ВПР по математике

ВПР по математике

Цель:. Познакомить уч-ся с подробным разбором заданий ВПР по математике ; Развивать мышление и логику учащихся. Выявить задания, вызывающие наибольшие ...
Внеклассное мероприятие по математике для учащихся 6 -ов

Внеклассное мероприятие по математике для учащихся 6 -ов

Цель внеклассного мероприятия:. 1. Повышение интереса к изучению математики, развитие творческих способностей учащихся и логического мышления. 2. ...

Конспекты

Дополнение условия задачи. Решение задач

Дополнение условия задачи. Решение задач

Конспект урока по математике для 1 класса по УМК 21 век. ТЕМА. :. «Дополнение условия задачи. Решение задач». ЦЕЛИ:. 1. Учить выделять части задачи, ...
Деление и умножение на однозначное число. Решение задач с использованием экологических понятий и терминов

Деление и умножение на однозначное число. Решение задач с использованием экологических понятий и терминов

Полякова Елена Александровна. учитель начальных классов. НОУ «Школа – интернат №8 ОАО «РЖД». УРОК . МАТЕМАТИКИ. (3. класс). Тема. : «. ...
Диаграммы. Решение задач

Диаграммы. Решение задач

Автор (фамилия, имя, отчество полностью) загружаемого материла. . . Гиль Наталья Николаевна. . . Место работы (полное наименование ОУ, город, ...
Деление с остатком. Решение задач на деление с остатком

Деление с остатком. Решение задач на деление с остатком

. Урок математики. . «Деление с остатком. Решение задач на деление с остатком». . Учитель:. Московченко Е. Н. ...
Деление с остатком. Решение задач

Деление с остатком. Решение задач

Урок математики в 3 классе по теме. «Деление с остатком. Решение задач». . Учитель начальных классов. МОУ «СОШ № 8» г.Саранск. Клёмина Татьяна ...
Деление на группы по несколько предметов

Деление на группы по несколько предметов

Технологическая карта урока. Учитель:. Панюкова Ольга Васильевна. . Класс. . . 1. . . . Предмет:. . Математика. . . ...
Вычисление по формулам

Вычисление по формулам

Полная разработка открытого урока по математике в 6 классе "Вычисление по формулам". Урок соответсвует ФГОС. Разработка включает в себя конспект урока, ...
Животноводство в нашем крае. Решение задач на движение

Животноводство в нашем крае. Решение задач на движение

Муниципальное общеобразовательное учреждение. «Туендатская основная общеобразовательная школа». Первомайского района Томской области. ...
Действия с составными именованными числами. Решение задач различного вида

Действия с составными именованными числами. Решение задач различного вида

Урок математики в 4 классе. . По программе «Школа 2100». Тема урока:. “Действия с составными именованными числами. Решение задач различного вида. ...
Действия с величинами. Соотношение цены, количества, стоимости. Решение задач, выражений

Действия с величинами. Соотношение цены, количества, стоимости. Решение задач, выражений

Автор: Енина Н.В. учитель начальных классов МКОУ НОШ №17 ст.Зольской,. . Ставропольский край. . Урок математики в 3-м классе. УМК «Гармония». ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Математика
Автор презентации:Богдановской В.М.
Содержит:14 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации