- Математика в системе матапредметных знаний учащихся

Презентация "Математика в системе матапредметных знаний учащихся" – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9

Презентацию на тему "Математика в системе матапредметных знаний учащихся" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 9 слайд(ов).

Слайды презентации

Проблемы и суждения. Подготовила: учитель математики МОУ СОШ №3 г.Аркадака ЗЕНОВА ОЛЬГА АНАТОЛЬЕВНА. МАТЕМАТИКА В СИСТЕМЕ МЕТАПРЕДМЕТНЫХ ЗНАНИЙ УЧАЩИХСЯ
Слайд 1

Проблемы и суждения

Подготовила: учитель математики МОУ СОШ №3 г.Аркадака ЗЕНОВА ОЛЬГА АНАТОЛЬЕВНА

МАТЕМАТИКА В СИСТЕМЕ МЕТАПРЕДМЕТНЫХ ЗНАНИЙ УЧАЩИХСЯ

Обучение школьников метапредметным знаниям требует консолидированного участия учителей математики и учителей- предметников. Сущность использования метода обучения состоит в варьировании сюжета, условий и предметного содержания задач, при сохранении ключевого понятия, заложенного в основу эвристическ
Слайд 2

Обучение школьников метапредметным знаниям требует консолидированного участия учителей математики и учителей- предметников. Сущность использования метода обучения состоит в варьировании сюжета, условий и предметного содержания задач, при сохранении ключевого понятия, заложенного в основу эвристического приема их решения.

КЛЮЧЕВЫЕ СЛОВА: Развивающее обучение, метапредметные знания, общенаучные понятия, интеграция естественно- научного и математического образования школьников.
Слайд 3

КЛЮЧЕВЫЕ СЛОВА:

Развивающее обучение, метапредметные знания, общенаучные понятия, интеграция естественно- научного и математического образования школьников.

1.Химический профиль: задача о скорости химической реакции. Пусть некоторое вещество вступает в химическую реакцию. Количество этого вещества, вступившее уже в реакцию к моменту времени t, обозначим через y(t). Таким образом, y есть функция времени, то за промежуток времени от момента t до момента t
Слайд 4

1.Химический профиль: задача о скорости химической реакции

Пусть некоторое вещество вступает в химическую реакцию. Количество этого вещества, вступившее уже в реакцию к моменту времени t, обозначим через y(t). Таким образом, y есть функция времени, то за промежуток времени от момента t до момента t+Δt вступит в реакцию ещё некоторое количество вещества Δy=y(t+Δt)- y(t). Следовательно, отношение Δy/Δt выразит среднюю скорость химической реакции за промежуток времени Δt. Для характеристики скорости химической реакции в данный момент t следует рассмотреть предел этого отношения при Δt →0.

2.Физический профиль: задача о мгновенной величине тока. Представим себе электрическую цепь с некоторым источником тока. Обозначим через q=q(t) количество электричества (в кулонах), протекающее через поперечное сечение проводника за время t. Количество электричества есть функция времени, так как каж
Слайд 5

2.Физический профиль: задача о мгновенной величине тока

Представим себе электрическую цепь с некоторым источником тока. Обозначим через q=q(t) количество электричества (в кулонах), протекающее через поперечное сечение проводника за время t. Количество электричества есть функция времени, так как каждому значению времени t соответствует определённое значение количества электричества.  Пусть Δt – некоторый промежуток времени, Δq=q(t+Δt)-q(t) – количество электричества, протекающее через указанное сечение за промежуток времени от момента времени t до момента t+Δt. Тогда отношение Δq/Δt называют средней силой тока за промежуток времени Δt и обозначают Iср. Иначе говоря, средней силой тока называется количество электричества, протекающее по проводнику в единицу времени. В случае постоянного тока Iср будет постоянной. Если в цепи переменный ток, то Iср будет различна для различных промежутков времени. Поэтому для цепи переменного тока вводят понятие мгновенной силы тока, или силы тока в данный момент времени t. Мгновенной силой тока в момент времени t называется предел отношения приращения количества электричества Δq ко времени Δt, за которое произошло это приращение, при условии, что Δt → 0.

3.Биологический профиль: задача о скорости роста популяции. Пусть p=p(t) – размер популяции бактерий в момент t. Таким образом, p есть функция времени. За промежуток времени от момента t до момента t+Δt размер популяции бактерий изменится на некоторое значение Δp=p(t+Δt)- p(t). Следовательно, отноше
Слайд 6

3.Биологический профиль: задача о скорости роста популяции

Пусть p=p(t) – размер популяции бактерий в момент t. Таким образом, p есть функция времени. За промежуток времени от момента t до момента t+Δt размер популяции бактерий изменится на некоторое значение Δp=p(t+Δt)- p(t). Следовательно, отношение Δp/Δt выразит среднюю скорость изменения численности бактерий в популяции. Для характеристики скорости изменения численности бактерий в популяции в данный момент t следует рассмотреть предел этого отношения при Δt → 0.

4.Гуманитарный профиль: задача о скорости чтения текста. Представим себе человека, читающего некий текст. Обозначим через y=y(t) количество букв, прочитываемое им за время t. Количество букв y есть функция времени, так как каждому значению времени t соответствует определённое значение количества бук
Слайд 7

4.Гуманитарный профиль: задача о скорости чтения текста.

Представим себе человека, читающего некий текст. Обозначим через y=y(t) количество букв, прочитываемое им за время t. Количество букв y есть функция времени, так как каждому значению времени t соответствует определённое значение количества букв.  Пусть Δt – некоторый промежуток времени, Δy=y(t+Δt)-y(t) – количество букв, прочитанное человеком за промежуток времени от момента времени t до момента t+Δt. Тогда отношение Δy/Δt называют средней скоростью чтения за промежуток времени Δt. Чтобы узнать скорость чтения текста в момент времени t, следует рассмотреть предел  отношения Δy/Δt, при условии, что Δt → 0.

5. Экономический профиль: задача о предельных издержках производства. Издержки производства y будем рассматривать как функцию количества выпускаемой продукции x. Пусть Δt – прирост продукции, тогда Δy – приращение издержек производства. Отношение Δy/Δx выражает среднее приращение издержек производст
Слайд 8

5. Экономический профиль: задача о предельных издержках производства

Издержки производства y будем рассматривать как функцию количества выпускаемой продукции x. Пусть Δt – прирост продукции, тогда Δy – приращение издержек производства. Отношение Δy/Δx выражает среднее приращение издержек производства на единицу продукции. Предел  отношения Δy/Δx, при условии, что Δt → 0, покажет предельные издержки производства и будет характеризовать приближённо дополнительные затраты на производство единицы дополнительной продукции.

СПАСИБО ЗА ВНИМАНИЕ !
Слайд 9

СПАСИБО ЗА ВНИМАНИЕ !

Список похожих презентаций

"Обыкновенные дроби" Математика

"Обыкновенные дроби" Математика

Дробь (математика) Дробь в математике — число, состоящее из одной или нескольких частей (долей) единицы. Дроби являются частью поля рациональных чисел. ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

Самостоятельная работа. Вариант I Вариант II. Выполнить действия в двоичной системе счисления:. 1) 101012 + 1012 2) 101012 + 10102 3) 1000012 – 1102 ...
«Математика в профессиях»

«Математика в профессиях»

Ознакомление с типами профессий и характеристиками труда. Исследование значения математики в различных областях деятельности человека. Развитие познавательной ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

ЗАДАНИЕ «ТЕЗИСЫ». Верно ли каждое из следующих утверждений? Если «Да», то записывайте 1. Если «Нет», то записывайте 0. В результате должно получиться ...
Алгебраические кривые в полярной системе координат и их применение в природе и технике

Алгебраические кривые в полярной системе координат и их применение в природе и технике

Цель: познакомиться с кривыми, не изучаемыми в школьном курсе алгебры, найти для них примеры в природе и технике. Локон Аньези. плоская кривая, геометрическое ...
Арифметическая прогрессия в древности

Арифметическая прогрессия в древности

Египетские папирусы и вавилонские клинописные таблички, относящие ко II тыс. до н.э., содержат примеры задач на арифметическую прогрессию. Каких-либо ...
Арифметическая и геометрическая прогрессии в заданиях ГИА

Арифметическая и геометрическая прогрессии в заданиях ГИА

Цели урока: Обобщить и систематизировать знания учащихся по данной теме. Разобрать типичные задания встречающихся в сборниках для подготовки к ГИА. ...
"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия». Дьердье Пойа, венгерский математик. ...
Больше в несколько раз, меньше в несколько раз

Больше в несколько раз, меньше в несколько раз

ЦЕЛЬ УРОКА. раскрытие смысла слов “больше (меньше) в несколько раз”. Расположите числа в порядке возрастания. 18, 9, 45, 27, 36, 72, 54, 63, 9, 18, ...
Биография М.В. Ломоносова в цифрах

Биография М.В. Ломоносова в цифрах

=2 =0,3 =3,6 =0,04 =1 =0,8 =0,42 =21,2 М И Ш А Н С К О Е. Ломоносов Родился в с. Мишанинском Архангельской губернии. 8 ноября 1711. Длина = 15,5 м ...
Без математики, друзья, в жизни нам никак нельзя

Без математики, друзья, в жизни нам никак нельзя

Актуальность. Математика находится в тесной связи со всеми естественными, гуманитарными, точными науками и др., математические знания применяются ...
«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...
"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

Смешанные дроби. Представление смешанного числа в виде неправильной дроби. 02.03. Определите координаты точек А, В, С и М. ...
"Симметрия в архитектуре Старого Оскола"

"Симметрия в архитектуре Старого Оскола"

Остановка 1. Главная улица города – улица Ленина. Мы находимся в центре нашего города у здания администрации. Какие приемы использовал архитектор, ...
Арифметические операции в позиционных системах счисления

Арифметические операции в позиционных системах счисления

Ответьте на вопросы:. Какие системы называются НЕПОЗИЦИОННЫМИ? Какие системы называются ПОЗИЦИОННЫМИ? Какое число называют – ОСНОВАНИЕ позиционной ...
5.Уравнение в полных дифференциалах. Интегрирующий множитель

5.Уравнение в полных дифференциалах. Интегрирующий множитель

Теорема:. Для того чтобы дифференцировать выражение , где и определены и непрерывны в области плоскости и имеют в ней непрерывные частные производные ...
Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах. Цели урока:. Познакомиться с историей возникновения родного города Научиться определять временные промежутки и ...
Алгебра в 9 классе.

Алгебра в 9 классе.

Функция их свойства и графики. Сформулируйте определение чётной функции, определение нечётной функции. Не является ни чётной, ни нечётной. чётная ...
Биссектриса угла в треугольнике

Биссектриса угла в треугольнике

Задачи УЧЕБНИК А О В С D 80º ? 180º- 80º= 100º 100º Ответ:155º, 25º, 155º. Задача №535 биссектриса ? Определение. Биссектриса угла – это луч с началом ...

Конспекты

Виды углов в планиметрии

Виды углов в планиметрии

Лабораторно-практические занятия по геометрии в 7 классе. Лабораторно-практические занятия имеют важное значение, особенно при обучении детей с ...
Введение в теорию вероятностей

Введение в теорию вероятностей

9 класс. Тема: Введение в теорию вероятностей.(90 мин.). Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, ...
Видеть и слышать, или как не потеряться в мире информации

Видеть и слышать, или как не потеряться в мире информации

Конспект – сценарий урока, разработанного учителями МОУ Брызгаловская СОШ Ивановой Е.Б. и Колпаковой Л.В. Тема: «Видеть и слышать, или как не потеряться ...
Бородинское сражение в математических задачах

Бородинское сражение в математических задачах

Открытый урок «Бородинское сражение в математических задачах». Карташова Ирина Викторовна , учитель математики МБОУ «Бирюковская СОШ». Техническое ...
Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...
Арифметический способ отбора корней в тригонометрических уравнениях

Арифметический способ отбора корней в тригонометрических уравнениях

Конспект урока для 11 класса на тему «Арифметический способ отбора корней в тригонометрических уравнениях». Цели и задачи урока:. . . повторение ...
I признак равенства треугольников в задачах

I признак равенства треугольников в задачах

ТЕМА УРОКА:. I. признак равенства треугольников в задачах. ТИП УРОКА. : закрепление изученного материала. КОНТИНГЕНТ УЧАЩИХСЯ:. 7 класс. ...
+ двухзначных и однозначных чисел в пределах 100

+ двухзначных и однозначных чисел в пределах 100

УРОК МАТЕМАТИКИ. Тема:. + двухзначных и однозначных чисел в пределах 100 (урок обобщения). Цель:. Создание условий для формирования УУД при ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Математика
Автор презентации:учитель математики Зенова О.А.
Содержит:9 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации