- Преобразование тригонометрических графиков

Презентация "Преобразование тригонометрических графиков" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20

Презентацию на тему "Преобразование тригонометрических графиков" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 20 слайд(ов).

Слайды презентации

Тема: Преобразование графиков тригонометрических функций и их свойства. Учитель МОУ ГСОШ Митряшина Е.И.
Слайд 1

Тема: Преобразование графиков тригонометрических функций и их свойства

Учитель МОУ ГСОШ Митряшина Е.И.

Характеристика преобразований графиков функций у=mf(x), y=f(kx) из графика функции y=f(x). 1. Если известен график функции y=f(x), то график функции y=f(kx) строится посредством сжатия по оси Оx исходного графика пропорционально коэффициенту k при аргументе, а именно: -если k>1, то сжатие в k раз
Слайд 2

Характеристика преобразований графиков функций у=mf(x), y=f(kx) из графика функции y=f(x)

1. Если известен график функции y=f(x), то график функции y=f(kx) строится посредством сжатия по оси Оx исходного графика пропорционально коэффициенту k при аргументе, а именно: -если k>1, то сжатие в k раз -если 0

Растяжение (сжатие) в k раз вдоль оси OX
Слайд 3

Растяжение (сжатие) в k раз вдоль оси OX

2. Если известен график функции y=f(x), то график функции y=kf(x)строится посредством растяжения вдоль оси Оy исходного графика, пропорционально коэффициенту в k раз, а именно: -если m>0, то растяжение в k раз -если 0
Слайд 4

2. Если известен график функции y=f(x), то график функции y=kf(x)строится посредством растяжения вдоль оси Оy исходного графика, пропорционально коэффициенту в k раз, а именно: -если m>0, то растяжение в k раз -если 0

Растяжение (сжатие) в k раз вдоль оси OY
Слайд 5

Растяжение (сжатие) в k раз вдоль оси OY

3. Если известен график функции y=f(x), то график функции y=f(x+m) строится посредством сдвига по оси Оx исходного графика(координатной оси) на m единиц, а именно: -если m>0, то сдвиг на m единиц влево -если m
Слайд 6

3. Если известен график функции y=f(x), то график функции y=f(x+m) строится посредством сдвига по оси Оx исходного графика(координатной оси) на m единиц, а именно: -если m>0, то сдвиг на m единиц влево -если m

Параллельный перенос вдоль оси OX
Слайд 7

Параллельный перенос вдоль оси OX

4. Если известен график функции y=f(x), то график функции y=f(x)+m строится посредством сдвига по оси Оy исходного графика(координатной оси) на m единиц, а именно: -если m>0, то сдвиг на m единиц вверх -если m
Слайд 8

4. Если известен график функции y=f(x), то график функции y=f(x)+m строится посредством сдвига по оси Оy исходного графика(координатной оси) на m единиц, а именно: -если m>0, то сдвиг на m единиц вверх -если m

Параллельный перенос вдоль оси OY
Слайд 9

Параллельный перенос вдоль оси OY

5. График функции y=f(|x|) получается из графика = y=f(x) следующим образом: Часть графика лежащая над осью Ох сохраняется, а его часть лежащая под осью Ох отображается симметрично относительно оси Оy
Слайд 10

5. График функции y=f(|x|) получается из графика = y=f(x) следующим образом: Часть графика лежащая над осью Ох сохраняется, а его часть лежащая под осью Ох отображается симметрично относительно оси Оy

График функции y=f(|x|)
Слайд 11

График функции y=f(|x|)

6. График функции y=|f(x)| получается из графика = y=f(x) следующим образом: Часть графика лежащая над осью Ох сохраняется, а его часть лежащая под осью Ох отображается симметрично относительно оси Ох
Слайд 12

6. График функции y=|f(x)| получается из графика = y=f(x) следующим образом: Часть графика лежащая над осью Ох сохраняется, а его часть лежащая под осью Ох отображается симметрично относительно оси Ох

График функции y=|f(x)|
Слайд 13

График функции y=|f(x)|

7. Чтобы построить график функции y=|f(|x|)| надо: построить график функции y=f(x) при x≥0. Отобразить полученную часть симметрично относительно оси Оy. Участки полученного графика, лежащие ниже оси Ox зеркально отобразить относительно этой оси
Слайд 14

7. Чтобы построить график функции y=|f(|x|)| надо: построить график функции y=f(x) при x≥0. Отобразить полученную часть симметрично относительно оси Оy. Участки полученного графика, лежащие ниже оси Ox зеркально отобразить относительно этой оси

График функции y=|f(|x|)|
Слайд 15

График функции y=|f(|x|)|

Характеристика графика гармонического колебания. (y=mf(kx+a)+b). Построение графика этой функции осуществляется в несколько этапов: Осуществим параллельный перенос системы координат, поместив начало новой системы х‘у’ в точку О’ (- ; 0) 2. В системе х‘у’ построим график функции у’=sin x (при этом мо
Слайд 16

Характеристика графика гармонического колебания

(y=mf(kx+a)+b)

Построение графика этой функции осуществляется в несколько этапов: Осуществим параллельный перенос системы координат, поместив начало новой системы х‘у’ в точку О’ (- ; 0) 2. В системе х‘у’ построим график функции у’=sin x (при этом можно ограничиваться одной полуволной) 3. Осуществим сжатие или растяжение последнего графика от оси у’ с коэффициентом А, получим требуемый график.

Функция синус. Область определения функции — множество R всех действительных чисел. Множество значений функции — отрезок [-1; 1], т.е. синус функция — ограниченная. Функция нечетная: sin(−x)=−sin x для всех х ∈ R. График функции симметричен относительно начала координат. Функция периодическая с наим
Слайд 17

Функция синус

Область определения функции — множество R всех действительных чисел. Множество значений функции — отрезок [-1; 1], т.е. синус функция — ограниченная. Функция нечетная: sin(−x)=−sin x для всех х ∈ R. График функции симметричен относительно начала координат. Функция периодическая с наименьшим положительным периодом 2π: sin(x+2π·k) = sin x, где k ∈ Z для всех х ∈ R. sin x = 0 при x = π·k, k ∈ Z. sin x > 0 (положительная) для всех x ∈ (2π·k, π+2π·k), k ∈ Z. sin x

Функция косинус. Область определения функции — множество R всех действительных чисел. Множество значений функции — отрезок [-1; 1], т.е. косинус функция — ограниченная. Функция четная: cos(−x)=cos x для всех х ∈ R. График функции симметричен относительно оси OY. Функция периодическая с наименьшим по
Слайд 18

Функция косинус

Область определения функции — множество R всех действительных чисел. Множество значений функции — отрезок [-1; 1], т.е. косинус функция — ограниченная. Функция четная: cos(−x)=cos x для всех х ∈ R. График функции симметричен относительно оси OY. Функция периодическая с наименьшим положительным периодом 2π: cos(x+2π·k) = cos x, где k ∈ Z для всех х ∈ R. cos x = 0 при cos x > 0 для всех cos x

Функция тангенс. Область определения функции — множество всех действительных чисел, кроме Множество значений функции — вся числовая прямая, т.е. тангенс — функция неограниченная. Функция нечетная: tg(−x)=−tg x для всех х из области определения. График функции симметричен относительно оси OY. Функция
Слайд 19

Функция тангенс

Область определения функции — множество всех действительных чисел, кроме Множество значений функции — вся числовая прямая, т.е. тангенс — функция неограниченная. Функция нечетная: tg(−x)=−tg x для всех х из области определения. График функции симметричен относительно оси OY. Функция периодическая с наименьшим положительным периодом π, т.е. tg(x+π·k) = tg x, k ∈ Z для всех х из области определения. tg x = 0 при tg x > 0 для всех tg x

Функция котангенс. Область определения функции — множество всех действительных чисел, кроме чисел Множество значений функции — вся числовая прямая, т.е. котангенс — функция неограниченная. Функция нечетная: ctg(−x)=−ctg x для всех х из области определения. График функции симметричен относительно оси
Слайд 20

Функция котангенс

Область определения функции — множество всех действительных чисел, кроме чисел Множество значений функции — вся числовая прямая, т.е. котангенс — функция неограниченная. Функция нечетная: ctg(−x)=−ctg x для всех х из области определения. График функции симметричен относительно оси OY. Функция периодическая с наименьшим положительным периодом π, т.е. ctg(x+π·k)=ctg x, k ∈ Z для всех х из области определения. ctg x = 0 при ctg x > 0 для всех ctg x

Список похожих презентаций

Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Цели урока:. Обобщить и систематизировать знания учащихся по теме. Показать актуальность темы в связи с введением ЕГЭ в штатный режим. Показать возможности ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Параллельный перенос на вектор (0; b) вдоль оси ординат: График функции f(x)+b получается параллельным переносом графика f(x) в положительном направлении ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Оборудование урока: компьютер, проектор, экран. Цели: Обобщить знания и умения. Развить умение наблюдать, сравнить, обобщать. Воспитать познавательную ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

y = cos(x+2) y=cos2x y=sinx +2 y=-3cosx y=sin1/2x y=sin(x-5) y=tg2x y=2ctgx y=ctg1/3x y=1/3sinx y=4-cosx y=ctgx+1. Сгруппируйте функции по какому-нибудь ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Цель урока:. Повторить свойства тригонометрических функций Изучить графическую программу Advanced Grapher, облегчающую построение графиков Изучить ...
Симметрия функций и преобразование их графиков

Симметрия функций и преобразование их графиков

ЦЕЛИ:. Повторить определение функции; основные понятия, связанные с ней; способы задания функции. Ввести понятие чётной и нечётной функции. Освоить ...
Решение задач на применение основных тригонометрических формул и преобразование выражений

Решение задач на применение основных тригонометрических формул и преобразование выражений

Цели и задачи урока. Повторить основные тригонометрические формулы. Закрепить знания свойств синуса, косинуса, тангенса и котангенса. Научиться применять ...
Преобразование графиков

Преобразование графиков

Содержание. Параллельный перенос вдоль оси OY Параллельный перенос вдоль оси ОХ Растяжение (сжатие) в k раз вдоль оси OY Растяжение (сжатие) в k раз ...
Преобразование графиков. Тригонометрические функции. Алгебра и начала анализа.

Преобразование графиков. Тригонометрические функции. Алгебра и начала анализа.

1. У = - f(x) ← y = f(x) , симметрия относительно оси ОХ. 2. У = f(- x) ← y = f(x), симметрия относительно оси ОУ. 3. У = - f (- x) ← y = f(x), симметрия ...
Преобразование тригонометрических выражений

Преобразование тригонометрических выражений

Учебные элементы. Синус, косинус, тангенс суммы и разности аргументов. Формулы двойного аргумента.(теория, примеры, задания) Формулы понижения степени. ...
Преобразование графиков функций

Преобразование графиков функций

Основные правила преобразования графиков функций. 1. У = - f(x) ← y = f(x) , отображением относительно оси ОХ. 2. У = f(- x) ← y = f(x), отображением ...
Преобразование графиков функций на координатной плоскости

Преобразование графиков функций на координатной плоскости

Эпиграф к уроку. Красота в единстве теории и практики. Цели обучения, воспитания и развития. Рациональные способы построения графиков функций. Развитие ...
Преобразование графиков функций

Преобразование графиков функций

Y=f (x ). Y=f (x+c). c>0 Сдвиг по оси Ох на с единиц влево. Y= f(x+c). c. Y=f (ax). 0. Y=f(ax). a>1 Сжатие вдоль оси Ох в а раз (или к оси Оу). Y=f ...
Преобразование графиков функции

Преобразование графиков функции

Повторение. Как построить график функции если известен график функции. . Рассмотрим построение графика функции. 1 случай: m – положительное число. ...
Преобразование графиков функций

Преобразование графиков функций

Дорогу осилит идущий, а математику – мыслящий Т.Эдисон. Цель урока. Изучить способ построения графиков функций y = f(kx), y = mf(x). Преобразование: ...
Преобразование графиков функций, содержащих модуль

Преобразование графиков функций, содержащих модуль

y = f(x) + a y = f(x) y = f(x) - a +a -a. Преобразование графиков функций. Т1. Параллельный перенос по оси Оу. y = f(x) график исходной функции. y ...
Построение графиков тригонометрических функций

Построение графиков тригонометрических функций

формирование знаний и умений преобразовать графики тригонометрических функций. Цель:. Закрепить применение программы MS Excel для построения графиков ...
Производные тригонометрических функций

Производные тригонометрических функций

Ввести формулы производных тригонометрических функций рассмотреть методы решения упражнений на применение изученных правил дифференцирования; вырабатывать ...
Преобразования графиков функций

Преобразования графиков функций

A B C x y 0 1. В качестве исходного графика функции y=f(x) выберем ломанную, состоящую из двух звеньев, заданных точками A(-5;-2), B(-2;4) и C(2;2). ...
Преобразование целого выражения в многочлен

Преобразование целого выражения в многочлен

Цели урока:. Ввести понятие целого выражения. Закрепить знания и умения при умножении многочлена на многочлен и применение формул сокращённого умножения. ...

Конспекты

Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Конспект урока по алгебре в 10 классе. Васильева Екатерина Сергеевна. ,. . учитель математики. ОГБОУ «Смоленская специальная (коррекционная). ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Тема урока : "Преобразование графиков тригонометрических функций ". . . Цели: . . -. образовательные:. обобщить и систематизировать знания ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

Математику уже затем следует учить, что она ум в порядок приводит. М. В. Ломоносов. Урок математики (продолжительность 1ч 20мин). Тема. ...
Преобразование графиков тригонометрических функций

Преобразование графиков тригонометрических функций

. . Воробьева Ирина Юрьевна. учитель математики. 1 категории. ГУ «Экономический лицей». г. Семей. Методическая разработка урока. ...
Преобразование тригонометрических выражений

Преобразование тригонометрических выражений

Здоровец Людмила Александровна учитель математики высшей категории. Государственное учреждение «Средняя школа №5». . . 150009, Северо-Казахстанская ...
Преобразование тригонометрических выражений

Преобразование тригонометрических выражений

учитель математики. Кулик Наталья Николаевна,. специалист высшей категории. . первого уровня. ГУ «Средняя школа № 19. отдела образования. ...
Решение тригонометрических уравнений

Решение тригонометрических уравнений

Муниципальное бюджетное общеобразовательное учреждение. . МО г. Нягань. «Средняя общеобразовательная школа №6». РАЗРАБОТКА УРОКА ПО АЛГЕБРЕ ...
Решение простейших и некоторых типов тригонометрических уравнений

Решение простейших и некоторых типов тригонометрических уравнений

План-конспект урока. . Учитель:. Дорофеева Л.И. Предмет:. математика. Класс:. 10 класс. Тема урока: «Решение простейших и некоторых типов ...
Решение тригонометрических уравнений

Решение тригонометрических уравнений

1.Савкина Марина Петровна. 2.ГУ «Веселорощинская общеобразовательная средняя школа» Железинского района Павлодарской области. 3.Учитель математики. ...
Применение основных тригонометрических тождеств к преобразованию выражений

Применение основных тригонометрических тождеств к преобразованию выражений

Урок. Алгебра. 9 класс. Тема:. . «. Применение основных тригонометрических тождеств. . к преобразованию выражений». . Цели:. . Повторить ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 мая 2019
Категория:Математика
Содержит:20 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации