- Решение уравнений нестандартными методами, используя свойства функций

Конспект урока «Решение уравнений нестандартными методами, используя свойства функций» по математике для 10 класса

Подготовил и провел учитель математики

МКОУ «СОШ №1» г. Поворино

Воронежской области

Карташова С. А.





2014г.

Тема урока: «Решение уравнений нестандартными методами, используя свойства функций»

Форма урока – лекция с последующим закреплением. Рассчитан на 2 урока

(Слайд №1)


Цели урока:

  1. Повторить и обобщить знания по теме: «Свойства функций»

  2. Научить применять функциональный метод решения уравнений

  3. Развивать логическое мышление, наблюдательность

  4. Воспитывать активность, творческую инициативу.

(слайд№2)


Оборудование: интерактивная доска, компьютер с презентацией.


План урока:

  1. Организационный момент.

  2. Мотивация учебной деятельности (сообщение темы, целей урока).

  3. Актуализация опорных знаний (повторение свойств основных функций).

  4. Изучение нового материала (функциональный метод решения уравнений).

  5. Закрепление знаний (решение упражнений).

  6. Подведение итогов. Оценки.


Ход урока.

Учитель:

Для решения большинства уравнений, встречающихся на экзаменах, достаточно владеть школьным курсом математики, но при этом необходимо уметь решать не только с помощью стандартных приемов, предназначенных для вполне определенных типов уравнений, но и «нестандартными» методами, о которых мы и поговорим сегодня на уроке. Одним из таких методов решения уравнений является функциональный, основанный на использовании свойств функций. В отличие от графического метода, знание свойств функций позволяет находить точные корни уравнения, при этом не требуется построения графиков функций. Использование свойств функций способствует рационализации решения уравнений.



(слайд№3)

Ответим на вопросы:

  1. Что называется уравнением?

  2. Что называется корнем уравнения?

  3. Что значит решить уравнение?

  4. Что называется функцией?

  5. Что называется областью определения функции?

  6. Что называется областью значений функции?


(слайд №4)


Рассмотрим (слайд №5)

ПРИМЕР 1. Решите уравнение:

Решение: ОДЗ:


Ответ: решений нет.


(слайд №6)

ПРИМЕР 2. Решите уравнение:

Решение: ОДЗ:

ОДЗ состоит из одной точки х=1. Остается проверить, является ли х=1 корнем уравнения. Подставив, видим, что х=1 – корень уравнения.

Ответ: х=1.


Учитель:

Иногда оказывается достаточным рассмотреть не всю область определения функции, а лишь ее подмножество, на котором функция принимает значения, удовлетворяющие некоторым условиям (например, только неотрицательные значения)


(слайд №7)

ПРИМЕР 3.

Решение. Найдем пересечение областей определения функций в правой и левой частях уравнения:

D1

Ограничим множество D, учитывая, что левая часть уравнения неотрицательна, и, значит, такой же должна быть правая частью Для этого нужно рассмотреть пересечение множества D с множеством решений неравенства , то есть с множеством . Следовательно, достаточно рассмотреть уравнение на множестве .

Подстановкой убеждаемся, что оба элемента служат решением уравнения.

Ответ: -3; 2.


(слайд №8)

ПРИМЕР 4.

Решение.

  1. Так как левая часть уравнения неотрицательна, то .

С учетом того, что корнем уравнения является х=4.

Ответ: 4.


Учитель:

Перейдем к решению уравнений с использованием понятия области значений функции.

(слайд №9-№10)


(слайд №11)

ПРИМЕР 1.

.

Решение. Так как , то уравнение не имеет решения.

Ответ: нет решений.


ПРИМЕР 2.

.

Решение. ОДЗ:

Ответ: нет решений.


Учитель:

Если функция f(x) на промежутке Х ограничена сверху, а функция g(x) ограничена снизу, то уравнение f(x) = g(x) равносильно системе


(слайд №12)

ПРИМЕР 3.

Решение. По определению,

Равенство достигается, если

Решим первое уравнение системы:

arccos (x-1) =π, x-1 = -1, x=0.

При х=0 второе уравнение обращается в верное числовое равенство.

Следовательно, решением системы и данного уравнения является х=0.

Ответ: 0.


(слайд №13-14)

ПРИМЕР 4.

.

Решение.

  1. ОДЗ:

  2. Рассмотрим функцию Её графиком является парабола с вершиной А(3;2), тогда .

  3. Рассмотрим функцию

Найдем максимум этой функции на промежутке (2;4) с помощью производной.

=0,




g’ + -


g 2 3 4 x

max

g(3)=2. Имеем

Тогда данное уравнение равносильно системе

Решив первое уравнение системы, получим х=3, проверкой, подставив во второе уравнение убедимся, что х=3 – решение системы и данного уравнения.

Ответ: 3.


(слайд №15)

Учитель:

Этот метод часто встречается на ЕГЭ по математике. Данный метод заключается в том, что одна часть уравнения ограничена сверху неким числом М, а другая часть уравнения ограничена снизу этим же числом М. Число М принято называть мажорантой, а этот метод - методом мажорант. В методе мажорант, как вы уже догадались надо хорошо понимать, что такое функция, уметь исследовать свойства функций.



















(слайд №16)

Упражнения для закрепления, выработка умений и навыков.

Класс делится на 2 группы по вариантам.


1 вариант.

Докажите, что уравнение не имеет корней.

Решить уравнения:

Ответ: -0,5.

Ответ: 4,25.

Ответ: 2.


2 вариант.

Докажите, что уравнение не имеет корней.

  1. ;

Решить уравнения:

Ответ: нет решений

Ответ:2,6.

Ответ: 2.











Учитель:

Мы сегодня рассмотрели нестандартный метод решения уравнений, используя свойства функций, который применим и для решений неравенств, но об этом мы поговорим на нескольких последующих занятиях.

Подведение итогов, оценки.


(слайд №17)

Домашнее задание:

  1. arcsin (x + 2) + .



9


Здесь представлен конспект к уроку на тему «Решение уравнений нестандартными методами, используя свойства функций», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Математика (10 класс). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Применение свойства монотонности функций при решении уравнений и неравенств

Применение свойства монотонности функций при решении уравнений и неравенств

Тамбовское областное государственное автономное образовательное учреждение – общеобразовательная школа – интернат. . «Мичуринский лицей». ...
Методическая разработка Урок математики в 6 классе Решение уравнений (урок закрепления)

Методическая разработка Урок математики в 6 классе Решение уравнений (урок закрепления)

Муниципальное образовательное учреждение. Средняя общеобразовательная школа №40 п.г.т. Шерловая Гора. Методическая разработка. Урок математики ...
Квадрат. Прямоугольник. Свойства квадрата и прямоугольника. Решение геометрических задач. Проект «Оригами

Квадрат. Прямоугольник. Свойства квадрата и прямоугольника. Решение геометрических задач. Проект «Оригами

Муниципальное бюджетное образовательное учреждение. «Основная общеобразовательная школа № 30». Конспект урока по математике во 2 классе. . ...
Квадратные уравнения. Виды квадратных уравнений. Решение неполных квадратных уравнений

Квадратные уравнения. Виды квадратных уравнений. Решение неполных квадратных уравнений

Тема урока: Квадратные уравнения. Виды квадратных уравнений. Решение неполных квадратных уравнений. Цели урока:. Образовательные. :. . ...
Закрепление: умножение и деление многозначных чисел на однозначные, решение уравнений и задач на движение

Закрепление: умножение и деление многозначных чисел на однозначные, решение уравнений и задач на движение

Урок математики в 4 классе. Урок-сказка закрепления пройденного материала. Тема: «Закрепление: умножение и деление многозначных чисел на однозначные, ...
Знакомство с уравнениями. Решение уравнений методом подбора

Знакомство с уравнениями. Решение уравнений методом подбора

Урок математики во 2 классе. Тема: Знакомство с уравнениями. Решение уравнений методом подбора. Цели урока:. . Обучающие:. открыть вместе ...
Закрепление знаний таблицы умножения на 5. Решение задач и уравнений

Закрепление знаний таблицы умножения на 5. Решение задач и уравнений

Кныш Татьяна Васильевна, учитель младших классов высшей категории, Общеобразовательная школа. І – ІІІ. ступеней № 50 города Макеевки, Донецкая область. ...
Решение дробных рациональных уравнений

Решение дробных рациональных уравнений

Муниципальное бюджетное общеобразовательное учреждение. «Новомихайловская средняя общеобразовательная школа». Татарского района Новосибирской области. ...
Графическое решение квадратных уравнений

Графическое решение квадратных уравнений

МБОУ «Гимназия №3». Конспект урока по математике в 8 классе на тему:. Учитель математики 1 кв.категории:. . Назарова ...
Графическое решение квадратных уравнений

Графическое решение квадратных уравнений

Графическое решение квадратных уравнений. . Цели урока:. . закрепить основные методы и навыки техники построения и чтения графиков линейных ...
Решение задач и уравнений

Решение задач и уравнений

«Решение задач и уравнений». Тип урока:. нестандартный. Класс:.  3. Тема урока:. Закрепление решение задач и уравнений. Цель урока:. закрепление ...
Графики функций y = ax2+ n и y = a(x-m)2

Графики функций y = ax2+ n и y = a(x-m)2

Тема:. «Графики функций y = ax2+ n и y = a(x-m)2». Цели:. формирование умений строить график квадратичной функции (частные случаи), определять ...
Решение задач

Решение задач

МАОУ СОШ № 44. Урок . математики . во 2. классе . по . теме:. «. Решение . задач». учитель ...
Решение задач

Решение задач

Математика. Урок-путешествие. Тема. :. Решение задач. Цель:. развивать умение решать задачи на нахождение цены, количества, стоимости; учить ...
Решение арифметических задач с применением средств ИКТ

Решение арифметических задач с применением средств ИКТ

Кондратьева Марина Олеговна. . Учитель информатики и ИКТ ГБОУ ЦО № 1440 г. Москвы. Фомина Татьяна Анатольевна. Учитель начальных классов ...
Применение распределительного свойства умножения

Применение распределительного свойства умножения

«Применение распределительного свойства умножения». Цели. : закрепить умения в использовании распределительного свойства умножения при решении примеров, ...
Приём устного деления двузначного числа на однозначное. Решение учебной задачи

Приём устного деления двузначного числа на однозначное. Решение учебной задачи

. КОНСПЕКТ УРОКА по ФГОС. Предмет:. математика (УМК «Гармония»). Класс: 3 А. . Учитель:. Рамазанова Е.Л. Тема урока:. «. Приём устного деления ...
Решение задач на движение

Решение задач на движение

Конспект урока математики на тему:. . «Решение задач на движение» (4 класс). Автор разработки: Чепурина Т. Н., учитель начальных классов. . ...
Деление двузначного числа на однозначное. Решение арифметических задач

Деление двузначного числа на однозначное. Решение арифметических задач

. УРОК 15 (задания 87-93). . . Учебный предмет:. математика. Класс:. 3. . Авторы учебника:. . Истомина Н.Б., Редько З.Б., Иванова И.Ю. УМК ...
Действия с составными именованными числами. Решение задач различного вида

Действия с составными именованными числами. Решение задач различного вида

Урок математики в 4 классе. . По программе «Школа 2100». Тема урока:. “Действия с составными именованными числами. Решение задач различного вида. ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:22 ноября 2018
Категория:Математика
Классы:
Поделись с друзьями:
Скачать конспект