- Решение задач с помощью теоремы Пифагора

Конспект урока «Решение задач с помощью теоремы Пифагора» по геометрии для 8 класса

Использование кейс - технологий на уроках математики.


Урок геометрии в 8 классе.

Тема урока: Решение задач с помощью теоремы Пифагора.

Цели педагогической деятельности:

  1. Закрепить знание теоремы Пифагора и теоремы, обратной теореме Пифагора.

  2. Развивать умения:


  • уметь применять теорему Пифагора на практике;

  • принимать самостоятельные решения и выдвигать собственные идеи.

3. Воспитывать:

  • умение работать в коллективе;

  • способность брать на себя ответственность.

Основные понятия:

  • теорема Пифагора;

  • теорема, обратная теореме Пифагора;

  • виды треугольников.

Раздаточный материал:

  • кейс с вопросами - 25 штук;

  • набор карточек с тремя уровнями сложности - 5 комплектов;

  • жетоны для распределения по группам;

  • жетоны для выдачи группам за решённые задачи;

  • критерии выставления оценок за аукцион. (Приложение № 1)

Основные этапы урока.

  1. Организационная деятельность. Слово учителя. Знакомство с ходом урока.

  2. Актуализация знаний учащихся.

  3. Устный счёт.

  4. Самостоятельная работа учащихся в виде аукциона. Итоги аукциона.

  5. Работа с кейсом. Анализ.

  6. Домашнее задание.

  7. Итог урока.

Ход урока.

1. Организационные моменты.

При входе в кабинет учащиеся берут жетоны и рассаживаются по группам за столы, на которых лежит выбранный ими жетон. Учитель знакомит с ходом работы на уроке.

2. Актуализация знаний учащихся.

  • Сформулировать теорему Пифагора.

  • Сформулировать теорему, обратную теореме Пифагора.

  • Сформулировать теорему о средней линии треугольника.

  • Перечислить свойства прямоугольного треугольника.


  1. Устный счёт по готовым чертежам. (Приложение № 2)

  2. Аукцион «Решение разноуровневых задач в группах». (Приложение № 3)

Учитель знакомит ребят с правилами аукциона. Группы определяют своего лидера,

который возьмёт на себя руководство группой. Вручение жетонов учителем за верно решённую задачу. Подведение итогов аукциона.

5. Работа с кейсом.

  • Вступительное слово учителя. Мы с вами рассматривали много примеров применения теоремы Пифагора в жизни. Сейчас познакомимся ещё с одним. Учитель знакомит ребят с кейсом. (Приложение № 4)

  • Работа с кейсом.

  • Анализ ситуации с использованием метода «Мозговая атака на доске».

6. Домашнее задание.

- Сочинить сказку или рассказ на применение теоремы Пифагора (мёртвый кейс).




































Приложение №1.

Критерии выставлении оценок.

2-3 балла- «3»; 4 — 5 баллов - «4»; От 6 баллов - «5».



Приложение № 2.

Задачи для устного счета.

Задание: найдите х.


1)























2)

































3)









Приложение № 3.

Задачи для аукциона.


(1 балл) Стороны прямоугольника равны 9 см и 12 см. Найдите диагонали

прямоугольника.

(1 балл) Периметр равностороннего треугольника равен 6 см. Найдите его высоту.

(1 балл) Катеты прямоугольного треугольника равны 5 см и 12 см. Найдите

периметр треугольника.

(3 балла) Основания прямоугольной трапеции равны 2 см и 10 см, а боковые

стороны относятся как 3:5. Найдите периметр трапеции.

(3 балла) Периметр равнобедренного треугольника равен 16 см, а его основание

равно 6 см. Найдите биссектрису треугольника, проведённую к основанию.

(3 балла) Основания прямоугольной трапеции равны 15 см и 6 см, а меньшая

диагональ является биссектрисой тупого угла. Найдите периметр трапеции.

(5 баллов) Диагонали ромба относятся как 3:4, а сторона равна 50 см. Найдите

диагонали и высоту ромба.

(5 баллов) Боковая сторона равнобедренного треугольника равна 17 см, а высота

проведённая к ней, равна 8 см. Найдите основание треугольника.

(5 баллов) Диагонали параллелограмма равны 30 см и 26 см, а высота равна 24 см.

Найдите стороны параллелограмма.




Приложение № 4.

Кейс «Помогла теорема Пифагора».

Действующие лица: - подозреваемый

  • следователь

  • потерпевший.

Цели:


  • закрепить изучаемый материал.

  • показать применение теоремы Пифагора в жизненной ситуации.

Проблемная ситуация: доказать с помощью теоремы Пифагора невиновность или виновность подозреваемого.

Этот эпизод взят из реальной следственной практики. Получив сообщение о краже, следователь выехал на место происшествия. Заявитель утверждал, что преступник проник в помещение, где хранились ценности, через окно. Осмотр показал, что подоконник находится на расстоянии 150 см от земли. Поверхность земли на расстоянии 200 см. от стены здания покрыта густой порослью, не имевшей никаких следов повреждений. При осмотре не было найдено никаких технических средств типа лестницы. Возникло предположение, что преступник проникал в помещение через окно каким-то образом преодолев расстояние между наружным краем поросли и подоконником. Оно было определено с помощью теоремы Пифагора. Следователь выдвинул версию об инсценировке кражи.


  1. Проанализируйте ситуацию.

  2. Выявите моменты, указывающие на возможность применения теоремы Пифагора.

  3. На основании каких фактов следователь выдвинул версию о невиновности подозреваемого? Аргументируйте свой ответ.

  4. Какие бы вы сделали выводы на месте следователя?


Здесь представлен конспект к уроку на тему «Решение задач с помощью теоремы Пифагора», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Геометрия (8 класс). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Теорема Пифагора. Решение задач

Теорема Пифагора. Решение задач

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа с. Липовка Духовницкого района Саратовской области». Урок ...
Некоторые свойства прямоугольных треугольников. Решение задач

Некоторые свойства прямоугольных треугольников. Решение задач

Тема урока. : «Некоторые свойства прямоугольных треугольников. Решение задач». Цель:. расширить знания учащихся о прямоугольных треугольниках. ...
Решение задач по теме «Четырехугольники

Решение задач по теме «Четырехугольники

Урок геометрии в 8 классе по теме. «Решение задач по теме «Четырехугольники»». . Тимофеева Галина Александровна, учитель математики. МБОУ «Средняя ...
Четырехугольники. Решение задач

Четырехугольники. Решение задач

Открытый урок по геометрии в 8 классе. Тема. Четырехугольники. Решение задач. Цели. Усвоение всеми учащимися стандартного минимума и расширение ...
Решение задач на тела вращения

Решение задач на тела вращения

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ГИМНАЗИЯ №40» г. БАРНАУЛА. МЕТОДИЧЕСКАЯ РАЗРАБОТКА УРОКА. «Современные ...
Доказательство теоремы Пифагора

Доказательство теоремы Пифагора

Министерство образования и науки Российской Федерации. Управление образования администрации города Твери. МОУ Тверская гимназия № 10. Региональный ...
Решение задач на вычисление объема цилиндрических тел

Решение задач на вычисление объема цилиндрических тел

Урок 3. Тема: Решение задач на вычисление объема цилиндрических тел. . Тип учебного занятия:. Урок совершенствования знаний, умений и навыков. ...
Решение задач

Решение задач

Урок геометрии для 7 класса «Решение задач». . Цель:. обзорное повторение материала, изученного за год;. Задачи урока:. проверить усвоение ...
Решение задач на вычисление объема цилиндрических и конических тел

Решение задач на вычисление объема цилиндрических и конических тел

Урок 5. Тема урока:. Решение задач на вычисление объема цилиндрических и конических тел. Тип учебного занятия:. Обобщение и систематизация знаний ...
Различные способы доказательства теоремы Пифагора

Различные способы доказательства теоремы Пифагора

Ход урока:. . Здравствуйте, садитесь. Меня зовут Людмила Александровна, я рада всех Вас видеть (слайд 1). Пребудет вечной истина, как скоро. ...
Прямоугольные треугольники. Решение задач

Прямоугольные треугольники. Решение задач

Прямоугольные треугольники. Решение задач. Цель:. - обучающая. – знать свойства прямоугольного треугольника, уметь применять эти свойства при ...
Прямоугольник – решение задач

Прямоугольник – решение задач

Технологическая карта урока. . Предмет, класс. Геометрия, 8 класс. . Авторы УМК. . А.В.Погорелов. . ФИО учителя, школа. . Фёдорова ...
Решение задач на вычисление объемов тел вращения

Решение задач на вычисление объемов тел вращения

Конспект урока. Предмет, класс. :. «Геометрия», 11«б» класс. (класс с углубленным изучением математики). Тема. :. «Решение задач на вычисление ...
Решение задач на вычисление площади четырехугольников

Решение задач на вычисление площади четырехугольников

Урок по английскому языку по теме:. "Решение задач на вычисление площади четырехугольников". . Цели урока:. Образовательные. :. . -повторить ...
Решение задач на применение первого признака равенства треугольников

Решение задач на применение первого признака равенства треугольников

Дата проведения 21.10.2014 г. Урок геометрии в 7 классе. Тема: «Решение задач на применение первого признака равенства треугольников». Цели урока:. ...
Площадь треугольника. Решение задач

Площадь треугольника. Решение задач

геометрия. . 8 класс. . Урок «Площадь треугольника. Решение задач». Оборудование:. 1. ноутбук, проектор. 2. учебники геометрия 7-9 Атанасян. ...
Сфера и шар. Решение задач

Сфера и шар. Решение задач

Конспект урока по геометрии для учащихся 11 класса. Тема:. «. Сфера и шар. Решение задач. ». Цели:. . - образовательные:. повторить изученный ...
Цилиндр, конус. Решение задач

Цилиндр, конус. Решение задач

Муниципальное бюджетное образовательное учреждение. «Гимназия № 7». г. Норильска Красноярского края. Урок математики по ...
Теорема обратная теореме Пифагора

Теорема обратная теореме Пифагора

ПЛАН-КОНСПЕКТ УРОКА. Теорема обратная теореме Пифагора. Решение задач. . ФИО. . . Козлова Лидия. Николаевна. . . . Место ...
Решение треугольников

Решение треугольников

Тема урока:. Решение треугольников. Цели урока: Выполнила Бовт Л.В. Доказать, что отношение стороны треугольника к синусу противолежащего угла ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:10 мая 2016
Категория:Геометрия
Классы:
Поделись с друзьями:
Скачать конспект