- Решение квадратных уравнений. Теорема Виета. Разложение квадратного трёхчлена на множители

Конспект урока «Решение квадратных уравнений. Теорема Виета. Разложение квадратного трёхчлена на множители» по алгебре для 8 класса

Для учителя Урок алгебры в 8 классе

Тема: «Решение квадратных уравнений. Теорема Виета. Разложение квадратного трёхчлена на множители»

Цель: совершенствовать навыки решения квадратных уравнений по формуле корней, совершенствовать навык применения теоремы Виета; научиться раскладывать квадратный трёхчлен на множители и выполнить проверочную работу.

Вид урока: комбинированный

Оборудование: компьютер, проектор, слайды, учебник Алгебра – 8 под ред. А.Абылкасымова, тетрадь.

Ход урока:

.0. Проверяем домашнее задание ____________________

1. Теория «Ищи слабое звено» ( 1 вопрос – 1 балл)

1)определение квадратного уравнения (взаимопроверка)

2)Теорема Виета (взаимопроверка)

3)Теорема обратная теореме Виета (взаимопроверка)

4) Ответь на эти вопросы учителю.

2.Заполни таблицу 1, решив предварительно уравнения в рабочей тетради.

Проверь ответы по ключу на доске (слайд 2).

Таблица 1.

Уравнение

Дискриминант

Х1

Х2

1.

Х2 - 4х +3 =0

4

1

3

2.

Х2+х -2 =0

9

-2

1

3.

2 +3х +1=0

1

-0,5

-1

4.

2 + 7х -6 =0

121

-3

2/3

5.

11х – 4х2+3=0

169

-0,25

3

Оценка: 1 уравнение – 1 балл

3. Заполните таблицу 2 , применив теорему Виета. Обсуди с товарищем (взаимопроверка)

Проверка ( слайд 3)

Уравнение

х12

Х1х2

Корни х1 и х2

1.

Х2-5х + 6 =0

5

6

2 и 3

2.

Х2 +7х +12 =0

-7

12

-3 и -4

3.

Х2 - 4х -5 =0

4

-5

-1 и 5

4.

2+18х+40 =0

-9

20

-4 и -5

5.

9х-х2-8 =0

9

8

1 и 8

Оценка: 1 уравнение – 1 балл

4. «Ищи ошибку» (слайд 4) « Кто ничего не замечает,

Тот ничего не изучает.

Кто ничего не изучает

Тот вечно хнычет и скучает».

Ученик 8 класса решил два уравнения. Проверь решение и исправь ошибки.

1)х2 – х - 12 = 0 2) - 3х2 + 5х +2 =0

Решение: D = b2 – 4 ac Решение: 3х2 - 5х -2 =0

D = -12 - 4∙1∙(- 12) = - 49 нет корней D = b2 – 4 ac

D = (-5)2-4∙3∙(- 2) = 25 – 24= 1 два корня

Х1= х2 =

Х1 = = = -

1 уравнение- 1 балл х2 = = = 1




Реши ( взаимопроверка ). Проверь по ключу ( слайд 5)


6. Выучи правило разложения квадратного трёхчлена на множители:

Разложить квадратный трёхчлен ах2 + bx + c на множители значит представить его в виде

a( xx1)∙(xx2), где а – первый коэффициент, х1 и х2 – корни квадратного трёхчлена.

Запомни ах2 + bx +c = a(xx1)∙(xx2)

Если D= 0, то квадратный трёхчлен имеет два равных корня и разложение на множители имеет вид

ax2 +bx +c = a(xx1)2

Если квадратный трёхчлен не имеет корней, то разложить такой трёхчлен на множители нельзя.

7. Вопросы учителя:

  1. Что надо знать, чтобы разложить квадратный трёхчлен на множители?

  2. Как разложить квадратный трёхчлен на множители ? (формула)

  3. Можно ли разложить квадратный трёхчлен на множители, если он не имеет корней?

  4. Как раскладывается квадратный трёхчлен на множители, если он имеет один корень?


8. Разложи на множители квадратные трёхчлены ( взаимопроверка)

Проверка ( слайд 6)

  1. Х2-4х +3 ; 2) 3х2 + 5х -2 ; 3)4х2 -12х + 9


9. Самостоятельная работа ( оценивается отдельно)

1 вариант

2 вариант

Решите уравнение : а)2х2 -5х +10 =0

б)6х2 + 7х + 1 =0

Решите уравнение : а) 3х2 +7х+2 =0

б)2х2-3х+5=0

Найди корни, используя т.Виета: х2- 11х +24 =0

Найди корни, используя т.Виета: х2-9х + 8 =0

Разложите на множители: а) х2+3х -18

б)2х2 +3х + 1

Разложите на множители: а) х2 – 7х + 6

б)5х2 -7х +2

( Работы проверяются после сдачи тетрадей)

10. Учитель:

1)какова была цель нашего урока?

2)Как вы считаете, цель урока достигнута?

3) Итак, если цель достигнута, то блиц-вопрос:

Разложите квадратный трёхчлен на множители: х2 - 7х +6 ( 1 балл)

11.Истользуя критерий оценивания, оцените свою работу, занесите оценку в оценочный лист.

12.Итоги урока и домашнее задание:


Для ученика Блок - предписание

Тема: «Решение квадратных уравнений. Теорема Виета. Разложение квадратного трёхчлена на множители».

Цель: совершенствовать навыки решения квадратных уравнений по формуле корней, совершенствовать навык применения теоремы Виета; научиться раскладывать квадратный трёхчлен на множители и выполнить проверочную работу

1. Теория «Ищи слабое звено»

Ответь на вопросы товарищу( поставь оценку в оценочный лист, 1 вопрос – 1балл)

1)определение квадратного уравнения (взаимопроверка)

2)Теорема Виета (взаимопроверка)

3)Теорема обратная теореме Виета (взаимопроверка)

4) Ответь на эти вопросы учителю.

2.Заполни таблицу 1, решив предварительно уравнения в рабочей тетради.

Проверь ответы по ключу на доске (слайд 2).

Таблица 1.

Уравнение

Дискриминант

Х1

Х2

1.

Х2 - 4х +3 =0




2.

Х2+х -2 =0




3.

2 +3х +1=0




4.

2 + 7х -6 =0




5.

11х – 4х2+3=0




Оценка: 1 уравнение – 1балл

3. Заполните таблицу 2 , применив теорему Виета. Обсуди с товарищем (взаимопроверка)

Проверка ( слайд 3)

Уравнение

х12

Х1х2

Корни х1 и х2

1.

Х2-5х + 6 =0




2.

Х2 +7х +12 =0




3.

Х2 - 4х -5 =0




4.

2+18х+40 =0




5.

9х-х2-8 =0




Оценка: 1 уравнение – 1 балл

4. «Ищи ошибку» ( слайд 4) Кто ничего не замечает

Тот ничего не изучает.

Кто ничего не изучает

Тот вечно хнычет и скучает.

Ученик 8 класса решил два уравнения. Проверь решение и исправь ошибки.

1)х2 – х - 12 = 0 2) - 3х2 + 5х +2 =0

Решение: D = b2 – 4 ac Решение: 3х2 - 5х -2 =0

D = -12 - 4∙1∙(- 12) = - 49 нет корней D = b2 – 4 ac

D = (-5)2-4∙3∙(- 2) = 25 – 24= 1 два корня

Х1= х2 =

Х1 = = = -

х2 = = = 1

Оценка: 1 уравнение – 1 балл

5. Реши № ( взаимопроверка ). Проверь по ключу ( слайд 8)

6. ( слайд 9)

Выучи правило разложения квадратного трёхчлена на множители:

Разложить квадратный трёхчлен ах2 + bx + c на множители значит представить его в виде

a( xx1)∙(xx2), где а – первый коэффициент, х1 и х2 – корни квадратного трёхчлена.

Запомни ах2 + bx +c = a(xx1)∙(xx2)

Если D= 0, то квадратный трёхчлен имеет два равных корня и разложение на множители имеет вид

ax2 +bx +c = a(xx1)2

Если квадратный трёхчлен не имеет корней, то разложить такой трёхчлен на множители нельзя.

7. (слайд 10)

Ответь товарищу на вопросы учителя:

1) Что надо знать, чтобы разложить квадратный трёхчлен на множители?

2)Как разложить квадратный трёхчлен на множители ? (формула)

3)Можно ли разложить квадратный трёхчлен на множители, если он не имеет корней?

4)Как раскладывается квадратный трёхчлен на множители, если он имеет один корень?

( Оцени ответ товарища 1 вопрос – 1 балл 8.( слайд 11) Разложи на множители квадратные трёхчлены ( взаимопроверка)

Проверка ( слайд 11)

  1. Х2-4х +3 ; 2) 3х2 + 5х -2 ; 3)4х2 -12х + 9

Оценка: 1 пример – 1 балл

9. слайд 12 Самостоятельная работа ( оценивается отдельно)

Проверь по ключу (слайд 13) – поставь оценку в оценочный лист.

1 вариант

2 вариант

Решите уравнение : а)2х2 -5х +10 =0

б)6х2 + 7х + 1 =0

Решите уравнение : а) 3х2 +7х+2 =0

б)2х2-3х+5=0

Найди корни, используя т.Виета: х2- 11х +24 =0

Найди корни, используя т.Виета: х2-9х + 8 =0

Разложите на множители: а) х2+3х -18

б)2х2 +3х + 1

Разложите на множители: а) х2 – 7х + 6

б)5х2 -7х +2

( работы проверяются после сдачи тетрадей)

10. Ответь товарищу на вопросы учителя:

1)какова была цель нашего урока?

2)Как вы считаете, цель урока достигнута?

3) Итак, если цель достигнута, то блиц-вопрос:

Разложите квадратный трёхчлен на множители: х2 - 7х +6 ( 1 балл)

-11. Подсчитайте общее число баллов. Используя критерий оценивания, оцените свою работу

и поставьте оценку в оценочный лист.

12. Итоги урока и домашнее задание:



















Блок - предписания и индивидуальные оценочные листы раздаются обучающимся, которые работают по ним самостоятельно, решая задания, выполняют взаимопроверку и ставят баллы в оценочный лист; задания можно проверить по слайдам сразу после их выполнения и также проставить баллы в оценочный лист.

Оценочный лист


Фамилия, имя______________________________________________________

Тема: « Решение квадратных уравнений. Теорема Виета. Разложение квадратного трёхчлена на множители"

Задание

Оценка

1

« Ищи слабое звено». Проверка теории.


2

Таблица 1


3

Таблица 2


4

« Ищи ошибку»


5

из учебника


6

Ответы на вопросы по разложению трёхчлена на множители


7

Разложить на множители квадратные трёхчлены


8.

Дополнительные ответы



Общий балл



Оценка за урок


9.

Самостоятельная работа (Вариант №_______ )



Критерий выставления оценки за урок:

  1. 22-29 баллов – «5»(отлично);

  2. 17-21 балл – «4»( хорошо);

  3. 13- 16 баллов – «3»(удовлетворительно);

  4. Если меньше 13 баллов : начните изучение этой темы сначала, у вас - «2» (неудовлетворительно).

__________________________________________________________________________________________


Блок - предписания и индивидуальные оценочные листы раздаются обучающимся, которые работают по ним самостоятельно, решая задания, выполняют взаимопроверку и ставят баллы в оценочный лист; задания можно проверить по слайдам сразу после их выполнения и также проставить баллы в оценочный лист.

Оценочный лист


Фамилия, имя______________________________________________________

Тема: « Решение квадратных уравнений. Теорема Виета. Разложение квадратного трёхчлена на множители"

Задание

Оценка

1

« Ищи слабое звено». Проверка теории.


2

Таблица 1


3

Таблица 2


4

« Ищи ошибку»


5

из учебника


6

Ответы на вопросы по разложению трёхчлена на множители


7

Разложить на множители квадратные трёхчлены


8.

Дополнительные ответы



Общий балл



Оценка за урок


9.

Самостоятельная работа (Вариант №_______ )



Критерий выставления оценки за урок:

  1. 22-29 баллов – «5»(отлично);

  2. 17-21 балл – «4»( хорошо);

  3. 13- 16 баллов – «3»(удовлетворительно);

  4. Если меньше 13 баллов : начните изучение этой темы сначала, у вас - «2» (неудовлетворительно).

Здесь представлен конспект к уроку на тему «Решение квадратных уравнений. Теорема Виета. Разложение квадратного трёхчлена на множители», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Алгебра (8 класс). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Квадратный трехчлен и его корни. Разложение квадратного трехчлена на множители

Квадратный трехчлен и его корни. Разложение квадратного трехчлена на множители

Разработка урока по алгебре. 8 класс. Тема урока «Квадратный трехчлен и его корни. Разложение квадратного трехчлена на множители». Учитель ...
Квадратный трехчлен. Разложение квадратного трехчлена на множители

Квадратный трехчлен. Разложение квадратного трехчлена на множители

Тема:. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Цели:. Образовательные:. сформировать у учащихся понятие квадратного ...
Решение задач на составления систем уравнений

Решение задач на составления систем уравнений

Тема урока. Решение задач на составления систем уравнений. Алгебра 7 класс. Основополагающий вопрос? Зачем. нужны. системы. уравнений при решении ...
Решение задач с помощью дробных рациональных уравнений

Решение задач с помощью дробных рациональных уравнений

МБОУ СОШ №6 г.Пушкино. . . Открытый урок: «Решение задач с помощью дробных рациональных уравнений». . . Учитель: Горшкова Н.Н. . . . ...
Разложение многочлена на множители способом группировки

Разложение многочлена на множители способом группировки

Муниципальное бюджетное общеобразовательное учреждение. «Новомихайловская средняя общеобразовательная школа». Татарского района Новосибирской области. ...
Решение задач на составление уравнений

Решение задач на составление уравнений

Конспект урока алгебры в 7 классе. Автор:. . Елизарова Инна Ивановна. Место работы:. МБОУ «Чудиновская основная общеобразовательная школа ...
Квадратные уравнения. Основные понятия. Решение неполных квадратных уравнений

Квадратные уравнения. Основные понятия. Решение неполных квадратных уравнений

Тема:. «Квадратные уравнения. Основные понятия. Решение неполных квадратных уравнений». Тип урока:. урок изучения нового материала. Цели урока:. ...
Разложение многочленов на множители с помощью комбинаций различного приема

Разложение многочленов на множители с помощью комбинаций различного приема

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ГИМНАЗИЯ №92. (Выборгский район). Открытый урок. по алгебре в 7. 2. классе. учитель ...
Разложение многочленов на множители

Разложение многочленов на множители

ПЛАН-КОНСПЕКТ УРОКА. . Разложение многочленов на множители. . ФИО (полностью). . Кривоножкина Ирина Николаевна. . . . Место ...
Разложение на множители с помощью комбинации различных приемов

Разложение на множители с помощью комбинации различных приемов

Тема:. . «Разложение на множители с помощью комбинации различных приемов». . . Учитель математики МБОУ СОШ № 11 п.Новотерский Мураева И. В. ...
Разложение на множители с помощью квадрата суммы и квадрата разности

Разложение на множители с помощью квадрата суммы и квадрата разности

МАОУ Видновская гимназия. учитель математики. высшей квалификационной категории. педагогический стаж 17 лет. Кондратьева Татьяна Юрьевна. ...
Разложение разности квадратов на множители

Разложение разности квадратов на множители

Урок. Алгебра: Учеб. для 7 кл. общеобразоват. учреждений/ Ю.Н. Макарычев, Н.Г. Макарычев, Н.Г. Миндюк, К.И.Нешков, С.Б. Суворова; Под ред. С.А. Теляковского.-12-е ...
Разложение разности квадратов на множители

Разложение разности квадратов на множители

Конспект урока. Аттестующий педагог:. Казачкова Светлана Николаевна. Предмет:. . Алгебра. . Класс. 7 «В». Тема урока:. «Умножение разности ...
Графическое решение квадратных уравнений

Графическое решение квадратных уравнений

Управление образования. администрации Павловского района. Проект урока. Предмет алгебра. класс 8 В. Тема. Графическое решение ...
Рациональные способы решения квадратных уравнений

Рациональные способы решения квадратных уравнений

ПРОБЛЕМНОЕ ОБУЧЕНИЕ. РАЗВИТИЕ ПОЗНАВАТЕЛЬНЫХ СПОСОБНОСТЕЙ. В ходе урока учащиеся знакомятся с нестандартными (не входящими в программу) способами ...
Решение биквадратных уравнений

Решение биквадратных уравнений

МУНИЦИПАЛЬНОЕ ОБРАЗОВАНИЕ ТАЗОВСКИЙ РАЙОН. Муниципальное казенное общеобразовательное учреждение. Тазовская школа – интернат среднего (полного) ...
Решение дробных рациональных уравнений

Решение дробных рациональных уравнений

«. Решение дробно-рациональных уравнений». . Урок: алгебра 9 класс. Тема. :. . Решение дробных рациональных уравнений. Цель:. . познакомить ...
Решение дробных рациональных уравнений

Решение дробных рациональных уравнений

8 класс. Тема « Решение дробных рациональных уравнений». Цель: закрепить изученный материал в ходе выполнения упражнений, развивать навыки решения ...
Разложение многочлена на множители с помощью комбинации различных способов

Разложение многочлена на множители с помощью комбинации различных способов

Муниципальное бюджетное общеобразовательное учреждение Слободищенская средняя общеобразовательная школа. Дятьковского района Брянской области. ...
Разложение многочлена на множители. Вынесение общего множителя за скобки

Разложение многочлена на множители. Вынесение общего множителя за скобки

Открытый урок по алгебре в 7 классе по теме:. «Разложение многочлена на множители. Вынесение общего множителя за скобки». Тип урока: урок закрепления ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:24 сентября 2016
Категория:Алгебра
Классы:
Поделись с друзьями:
Скачать конспект