» » » ЦЕНТРАЛЬНАЯ СИММЕТРИЯ

Презентация на тему ЦЕНТРАЛЬНАЯ СИММЕТРИЯ

Презентацию на тему ЦЕНТРАЛЬНАЯ СИММЕТРИЯ можно скачать абсолютно бесплатно на нашем сайте. Предмет презентации : Математика. Красочные слайды и илюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого презентации воспользуйтесь плеером, или если вы хотите скачать презентацию - нажмите на соответствующий текст под плеером. Презентация содержит 41 слайд.

Слайды презентации

Слайд 1: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 1

Подготовили ученики X «А» класса: Зацепина Екатерина, Павлова Юлия.

Центральная симметрия.

Prezentacii.com
Слайд 2: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 2

Определение: Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.

Слайд 3: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 3

Приведём примеры фигур, обладающие центральной симметрией: Простейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм. Центром симметрии окружности является центр окружности,а центром симметрии параллелограмма - точка пересечения его диагоналей.

O
Слайд 4: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 4
А В О

Две точки А и В называются симметричными относительно точки О, если О - середина отрезка АВ. Точка О считается симметричной самой себе.

Слайд 5: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 5

Например: На рисунке точки М и М1, N и N1 симметричны относительно точки О, а точки Р и Q не симметричны относительно этой точки.

М М1 N N1 Р Q
Слайд 6: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 6

Центральная симметрия в прямоугольной системе координат:

Если в прямоугольной системе координат точка А имеет координаты (x0;y0), то координаты (-x0;-y0) точки А1, симметричной точке А относительно начала координат, выражаются формулами x0 = -x0 y0 = -y0

у х 0 А(x0;y0) А1(-x0;-y0) x0 -x0 y0 -y0
Слайд 7: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 7

Центральная симметрии в прямоугольных трапециях:

Слайд 8: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 8

Центральная симметрия в квадратах:

Слайд 9: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 9

Центральная симметрия в параллелограммах:

Слайд 10: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 10

Центральная симметрия в шестиконечной звезде:

Слайд 11: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 11

Точка О является центром симметрии, если при повороте вокруг точки О на 180° фигура переходит сама в себя.

180°
Слайд 12: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 12

Прямая также обладает центральной симметрией, однако в отличие от других фигур, которые имеют только один центр симметрии(точка О на рисунках), у прямой их бесконечно много - любая точка прямой является её центром симметрии. Примером фигуры, не имеющей центра симметрии, является треугольник.

С
Слайд 13: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 13

Применение на практике: Примеры симметрии в растениях:

Вопрос о симметрии в растениях возник ещё в 5 веке до н. э. На явление симметрии в живой природе обратили внимание в Древней Греции пифагорейцы в связи с развитием ими учения о гармонии. В 19 веке появлялись отдельные работы, касающиеся этой темы. А в 1961 году как результат многовековых исследований, посвященных поиску красоты и гармонии окружающей нас природы, появилась наука биосимметрика. Центральная симметрия характерна для различных плодов: голубика, черника, вишня, клюква. Рассмотрим разрез любой из этих ягод. В разрезе она представляет собой окружность, а окружность, как нам известно, имеет центр симметрии. Центральную симметрию можно наблюдать на изображении таких цветов как цветок одуванчика, цветок мать-и-мачехи, цветок кувшинки, сердцевина ромашки, а в некоторых случаях центральной симметрией обладает и изображение всего цветка ромашки. Её сердцевина представляет собой окружность, и поэтому центрально симметрична, так как мы знаем, что окружность имеет центр симметрии. Весь же цветок обладает центральной симметрией только в случае четного количества лепестков. В случае же нечетного количества лепестков, вспомните анютины глазки , он обладает только осевой. Выводы: По нашим наблюдениям, в любом растении можно найти какую-то его часть, обладающую осевой или центральной симметрией. Это могут быть листья, цветы, стебли, стволы деревьев, плоды, и более мелкие части, такие как сердцевина цветка, пестик, тычинки и другие. Осевая симметрия присуща различным видам растений и грибам, и их частям. Центральная симметрия наиболее характерна для плодов растений и некоторых цветов.

Слайд 14: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 14
Ромашка Анютины глазки
Слайд 15: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 15

Центральная симметрия в архитектуре:

Во второй половине XVIII - первой трети XIX века Петербург приобрёл воспетый А.С. Пушкиным “строгий, стройный вид”, который придала городу архитектура классицизма. Все здания, построенные в стиле классицизм, имеют четкие прямолинейные симметричные композиции. В начале XIX века по проекту А.Н. Воронихина было сооружено выдающееся произведение искусства – Казанский собор. Перед Казанским собором симметрично установлены памятники М.И. Кутузову и М.Б. Барклаю-де-Толли, полководцам, разгромившим армию Наполеона. Примером современных зданий, построенных в середине ХХ века, является гостиница “Прибалтийская”. Симметричность, как видно из чертежа присутствует как в общей композиции, так и в каждой из трех его составляющих:средняя часть – арка с куполом и пикой на вершине, два боковых крыла гостиницы. Выводы: Принципы симметрии являются основополагающими для любого архитектора, но вопрос о соотношении между симметрией и асимметрией каждый архитектор решает по-разному. Асимметричное в целом сооружение может являть собой гармоническую композицию симметричных элементов. Удачное решение определяется талантом зодчего, его художественным вкусом и его пониманием прекрасного. Прогуляйтесь по нашему городу и убедитесь, что удачных решений может быть очень много, но неизменным остается одно – стремление архитектора к гармонии, а это в той или иной степени связано с симметрией.

Слайд 16: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 16

Гостиница «Прибалтийская»

Казанский собор
Слайд 17: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 17

Центральная симметрия в зоологии:

Рассмотрим, как связаны животный мир и симметрия. Центральная симметрия наиболее характерна для животных, ведущих подводный образ жизни. А также есть пример асимметричных животных: инфузория-туфелька и амёба Выводы: Симметрию живого существа определяет направление его движения. Для живых существ, для которых ведущим направлением является направление движения “вперед”, наиболее характерна осевая симметрия. Так как в этом направлении животные устремляются за пищей и в этом же спасаются от преследователей. А нарушение симметрии привело бы к торможению одной из сторон и превращению поступательного движения в круговое. Центральная симметрия чаще встречается в форме животных, обитающих под водой. Асимметрию можно наблюдать на примере простейших животных.

Слайд 18: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 18
Лягушка Паук Бабочка
Слайд 19: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 19

инфузория-туфелька и амёба

Слайд 20: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 20

Центральная симметрия в транспорте:

Центральная симметрия не совместима с формой наземного и подземного транспорта. Причиной этого служит его направление движения. При рассмотрении вида сверху трамвая, электровоза, телеги, мы видим, что ось симметрии проходит вдоль направления движения. Таким образом, центральную симметрию следует искать в воздушном и подводном транспорте, т. е. в таких видах, где направления: вперед, назад, вправо, влево, – равноценны. Один из таких видов транспорта – это воздушный шар. Другой пример воздушного транспорта – это парашют. Ученые относят его изобретение еще к 13 веку. На нашем чертеже мы представили вид сверху воздушного шара. Отметим, что он аналогичен виду сверху парашюта. Как мы видим, эта фигура центрально симметрична. О – центр симметрии. Дальнейшее развитие парашют получил в изобретении нашими учеными “надувного тормозного устройства”. Оно предназначено для спуска грузов и человека с орбиты. Надувное тормозное устройство представляет собой эластичную оболочку, наполняемую в космосе. Она имеет гибкую теплозащиту и дополнительную надувную оболочку. На базе него предполагается конструирование и спасательных устройств, которые могут использоваться, например, при пожаре в многоэтажных домах. Вид сверху этого устройства представляет собой круг. А круг, как мы знаем, не только обладает осевой симметрией, но и центральной. Центр симметрии совпадает с центром круга. Выводы: Вид сверху и вид спереди различных видов транспорта обладает либо центральной, либо осевой симметрией. Для наземного вида транспорта в большей степени характерна осевая симметрия. Причиной этого является направление его движения. Центральная симметрия чаще встречается в форме воздушного и подводного транспорта, для которого направления: вправо, влево, вперед, назад, – равноценны. Модели транспорта будущего в той же степени, что и модели настоящего и прошлого обладают различными видами.

Слайд 21: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 21

Надувное тормозное устройство

Капсула поезда

Парашют (вид сверху)

Слайд 22: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 22

А также с симметрией мы часто встречаемся в искусстве, архитектуре, технике, быту. В большинстве случаев симметричны относительно центра узоры на коврах, тканях, комнатных обоях. Симметричны многие детали механизмов, например зубчатые колёса.

Слайд 23: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 23

Аксиомы стереометрии и планиметрии

Подготовила: ученица Х «А» класса Зацепина Екатерина.

Слайд 24: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 24

Аксиомы стереометрии.

Слайд 25: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 25

Аксиома 1(С1): Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости, и точки, не принадлежащие ей.

А α , В α α Α в Э
Слайд 26: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 26

Аксиома 2(С2): Если две различные плоскости имеют общую точку, то они пересекаются по одной прямой, проходящей через эту точку.

β А α А β } α β = m U m
Слайд 27: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 27

Аксиома 3(С3): Если две различные прямые имеют общую точку, то через них можно провести плоскость, и притом только одну.

a b = d a, b, d α d a
Слайд 28: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 28

Аксиомы планиметрии.

Слайд 29: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 29

Аксиома I: Какова бы не была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей. Через любые две точки можно провести прямую, и только одну.

А,В=α
Слайд 30: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 30

Аксиома II: Из трёх точек на прямой одна и только одна лежит между двумя другими.

Слайд 31: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 31

Аксиома III: Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.

АВ > 0
Слайд 32: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 32
АC + CВ > 0 C
Слайд 33: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 33
АC+CВ > 0
Слайд 34: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 34

Аксиома IV: Прямая, принадлежащая плоскости, разбивает эту плоскость на две полуплоскости: β и φ

φ
Слайд 35: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 35

Аксиома V: Каждый угол имеет определённую градусную меру, большую нуля. Развёрнутый угол равен 180 . Градусная мера угла равна сумме, градусных мер углов,на которые он разбивается любым лучом, проходящим между его сторонами.

180
Слайд 36: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 36

Аксиома VI: На любой полупрямой от её начальной точки можно отложить отрезок заданной длины, и только один.

АВ α
Слайд 37: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 37

Аксиома VII: От полупрямой на содержащей её плоскости в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180, и только один. φ = 45°< 180°

b φ=45°
Слайд 38: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 38

Аксиома VIII: Каков бы ни был треугольник, существует равный ему треугольник в данной плоскости в заданном расположении относительно данной полупрямой в этой плоскости.

а А1 В1 С1
Слайд 39: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 39

Аксиома IX: На плоскости через данную точку, не лежащую на данной прямой, можно провести не более одной прямой, параллельной данной.

B
Слайд 40: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 40
Слайд 41: Презентация ЦЕНТРАЛЬНАЯ СИММЕТРИЯ
Слайд 41
  • Яндекс.Метрика
  • Рейтинг@Mail.ru