Презентация "Каменный уголь" (8 класс) по географии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43
Слайд 44
Слайд 45
Слайд 46
Слайд 47
Слайд 48
Слайд 49
Слайд 50
Слайд 51
Слайд 52
Слайд 53
Слайд 54
Слайд 55
Слайд 56

Презентацию на тему "Каменный уголь" (8 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: География. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 56 слайд(ов).

Слайды презентации

КАМЕННЫЙ УГОЛЬ Происхождение. Состав и месторождения. Экологические проблемы. Применение Переработка
Слайд 1

КАМЕННЫЙ УГОЛЬ Происхождение

Состав и месторождения

Экологические проблемы

Применение Переработка

ТЕОРИЯ ПРОИСХОЖДЕНИЯ. Уголь – это остатки растений, погибших многие миллионы лет назад, гниение которых было прервано в результате прекращения доступа воздуха.
Слайд 2

ТЕОРИЯ ПРОИСХОЖДЕНИЯ

Уголь – это остатки растений, погибших многие миллионы лет назад, гниение которых было прервано в результате прекращения доступа воздуха.

ГЕНЕТИЧЕСКИЕ ГРУППЫ УГЛЯ. сапрогумолиты гумолиты сапропелиты
Слайд 3

ГЕНЕТИЧЕСКИЕ ГРУППЫ УГЛЯ

сапрогумолиты гумолиты сапропелиты

растительные останки торф бурый уголь каменный уголь антрацит графит. УГЛЕФИЦИРОВАНИЕ Е М Т А М О Р Ф И З М
Слайд 4

растительные останки торф бурый уголь каменный уголь антрацит графит.

УГЛЕФИЦИРОВАНИЕ Е М Т А М О Р Ф И З М

Характерные физические свойства каменного угля: - содержание углерода (С,%) - 75-97; - плотность (г/см3) – 1,28-1,53; - механическая прочность (кг/см2) – 40-300; - удельная теплоемкость С (Ккал/г град) – 026-032; - коэффициент преломления света – 1,82-2,04.
Слайд 5

Характерные физические свойства каменного угля:

- содержание углерода (С,%) - 75-97; - плотность (г/см3) – 1,28-1,53; - механическая прочность (кг/см2) – 40-300; - удельная теплоемкость С (Ккал/г град) – 026-032; - коэффициент преломления света – 1,82-2,04.

СОСТАВ И ВАЖНЕЙШИЕ МЕСТОРОЖДЕНИЯ. Состав каменного угля очень сложен: в нем содержатся как органические, так и неорганические вещества. Запасы угля на нашей планете значительно превышают запасы нефти. Небольшую его часть используют как топливо, в основном же он удовлетворяет нужды коксохимического п
Слайд 6

СОСТАВ И ВАЖНЕЙШИЕ МЕСТОРОЖДЕНИЯ

Состав каменного угля очень сложен: в нем содержатся как органические, так и неорганические вещества. Запасы угля на нашей планете значительно превышают запасы нефти. Небольшую его часть используют как топливо, в основном же он удовлетворяет нужды коксохимического производства. Переработка каменного угля в настоящее время становится одним из основных направлений в химической промышленности.

Каменный уголь представляет собой полезное ископаемое, которое образовалось миллионы лет назад из отмерших остатков растений в результате сложных процессов.

Состав Каменного угля. Состав каменного угля очень сложен: в нем содержатся как органические, так и неорганические вещества.
Слайд 7

Состав Каменного угля

Состав каменного угля очень сложен: в нем содержатся как органические, так и неорганические вещества.

По признакам различают: блестящие (витрен), полублестящие (кларен), матовые (дюрен), волокнистые (фюзен). Эти составляющие чаще всего располагаются слоями, придавая каменным углям полосчатую структуру.
Слайд 8

По признакам различают: блестящие (витрен), полублестящие (кларен), матовые (дюрен), волокнистые (фюзен).

Эти составляющие чаще всего располагаются слоями, придавая каменным углям полосчатую структуру.

Составные части каменного угля. Основная - горючая, или органическая, масса угля (ОМУ), влага и минер. включения, образующие при сжигании золу; Зольность каменных углей составляет 5-30% по массе и более; Главные составляющие золы: оксиды Si, Fe и Аl, редкие и рассеянные элементы (Ge, V, W, Ti и т.д.
Слайд 9

Составные части каменного угля

Основная - горючая, или органическая, масса угля (ОМУ), влага и минер. включения, образующие при сжигании золу; Зольность каменных углей составляет 5-30% по массе и более; Главные составляющие золы: оксиды Si, Fe и Аl, редкие и рассеянные элементы (Ge, V, W, Ti и т.д.), а также драгоценные металлы (Au, Ag). Горючая масса содержит С, Н, N, О и S, входящую также в состав минер.

Химический состав. По химическому составу каменный уголь представляет смесь высокомолекулярных полициклических ароматических соединений с высокой массовой долей углерода, а также воды и летучих веществ с небольшими количествами минеральных примесей, при сжигании угля образующих золу. Ископаемые угли
Слайд 10

Химический состав

По химическому составу каменный уголь представляет смесь высокомолекулярных полициклических ароматических соединений с высокой массовой долей углерода, а также воды и летучих веществ с небольшими количествами минеральных примесей, при сжигании угля образующих золу. Ископаемые угли отличаются друг от друга соотношением слагающих их компонентов, что определяет их теплоту сгорания. Ряд органических соединений, входящие в состав каменного угля, обладает канцерогенными свойствами.

Зола. Главные составляющие золы: оксиды Si, Fe и Аl, редкие и рассеянные элементы (Ge, V, W, Ti и т.д.), а также драгоценные металлы (Au, Ag) Горючая масса содержит С, Н, N, О и S, входящую также в состав минеральной части.
Слайд 11

Зола

Главные составляющие золы: оксиды Si, Fe и Аl, редкие и рассеянные элементы (Ge, V, W, Ti и т.д.), а также драгоценные металлы (Au, Ag) Горючая масса содержит С, Н, N, О и S, входящую также в состав минеральной части.

ОМУ. Широкое распространение получили представления о гибридном характере мол. структуры, состоящей из пространственных, плоскостных и линейных фрагментов. Последние включают преим. макроалифатич. Радикалы и О-, N- и S- содержащие функциональные группы (см. также Гидрогенизация угля).
Слайд 12

ОМУ

Широкое распространение получили представления о гибридном характере мол. структуры, состоящей из пространственных, плоскостных и линейных фрагментов. Последние включают преим. макроалифатич. Радикалы и О-, N- и S- содержащие функциональные группы (см. также Гидрогенизация угля).

Характеристика разных марок угля
Слайд 13

Характеристика разных марок угля

Основные месторождения. Эльгинское месторождение (Саха). Наиболее перспективный объект для открытой разработки — находится на юго-востоке Республики Саха. Площадь месторождения 246 км2. Месторождение представляет собой пологую брахисинклинальную асимметричную складку. Угленосны отложения верхней юры
Слайд 14

Основные месторождения

Эльгинское месторождение (Саха). Наиболее перспективный объект для открытой разработки — находится на юго-востоке Республики Саха. Площадь месторождения 246 км2. Месторождение представляет собой пологую брахисинклинальную асимметричную складку. Угленосны отложения верхней юры и нижнего мела. Основные угольные пласты приурочены к отложениям нерюнгринской (6 пластов мощностью 0,7-17 м) и ундыктанской (18 пластов мощностью также 0,7-17 м) свит. Угли в основном полублестящие линзовидно-полосчатые с очень высоким содержанием наиболее ценного компонента — витринита (78-98 %). По степени метаморфизма угли относятся к III (жирной) стадии. Марка угля Ж, группа 2Ж. Угли средне- и высокозольные (15—24 %), малосернистые (0,2 %), малофосфористые (0,01 %), хорошо спекающиеся (Y = 28—37 мм), с высокой теплотой сгорания (28 МДж/кг). Месторождение представлено мощными (до 17 метров) пологими пластами с перекрывающими отложениями небольшой мощности (коэффициент вскрыши — около 3 куб м на тонну рядового угля), что очень выгодно для организации добычи открытым способом.

Элегестское месторождение (Тува) обладает запасами около 1 млрд т коксующегося угля дефицитной марки «Ж» (общий объем запасов оценивается в 20 млрд т). 80 % запасов находится в одном пласте толщиной 6,4 м (лучшие шахты Кузбасса работают в пластах толщиной 2-3 м, в Воркуте уголь добывают из пластов тоньше 1 м). После выхода на проектную мощность к 2012 году на Элегесте ожидается -добыча 12 млн т угля ежегодно. Лицензия на разработку элегестских углей принадлежит Енисейской промышленной компании, которая входит в структуру «Объединенной промышленной корпорации» (ОПК). Правительственная комиссия по инвестиционным проектам РФ 22 марта 2007 года одобрила реализацию проектов по строительству железнодорожной линии «Кызыл-Курагино» в увязке с освоением минерально-сырьевой базы Республики Тува.

Угольные бассейны на территории России
Слайд 15

Угольные бассейны на территории России

Каменный уголь Слайд: 16
Слайд 16
Доказанные запасы угля
Слайд 17

Доказанные запасы угля

ВАЖНЕЙШИЕ ПРОДУКТЫ, ПОЛУЧАЕМЫЕ ПРИ ПЕРЕРАБОТКЕ УГЛЯ. Из угля при химической переработке получают до 300 наименований разнообразных продуктов. Получают высокоуглеродистые углеграфитовые материалы, горный воск, пластические массы, синтетическое, жидкое и газообразное высоко- калорийное топливо. А так
Слайд 18

ВАЖНЕЙШИЕ ПРОДУКТЫ, ПОЛУЧАЕМЫЕ ПРИ ПЕРЕРАБОТКЕ УГЛЯ

Из угля при химической переработке получают до 300 наименований разнообразных продуктов. Получают высокоуглеродистые углеграфитовые материалы, горный воск, пластические массы, синтетическое, жидкое и газообразное высоко- калорийное топливо.

А так же ароматические продукты путём гидрогенизации и высоко азотистые кислоты для удобрений.

Кокс и побочные продукты каменного угля. Батарея коксовых печей со стороны коксовыталкивателя. Кокс - серое, чуть серебристое, пористое и очень твердое вещество, более чем на 96% состоящее из углерода и получаемое при нагревании каменного угля или нефтяных пеков без доступа воздуха при 950-1050°С. П
Слайд 19

Кокс и побочные продукты каменного угля

Батарея коксовых печей со стороны коксовыталкивателя

Кокс - серое, чуть серебристое, пористое и очень твердое вещество, более чем на 96% состоящее из углерода и получаемое при нагревании каменного угля или нефтяных пеков без доступа воздуха при 950-1050°С. Процесс получения- кокса в результате переработки природных топлив называется коксованием.

Схема улавливания продуктов коксования: 1 — коксовая батарея; 2 — газосборник; 3 — газопровод; 4 — отделитель конденсата; 5 — газовый холодильник; 6 — электрофильтр (для отделения смолы); 7 — газодувка; 8 — трубопровод для отвода конденсата; 9 — отстойник; 10 — хранилище смолы; 11 — хранилище аммиач
Слайд 20

Схема улавливания продуктов коксования:

1 — коксовая батарея; 2 — газосборник; 3 — газопровод; 4 — отделитель конденсата; 5 — газовый холодильник; 6 — электрофильтр (для отделения смолы); 7 — газодувка; 8 — трубопровод для отвода конденсата; 9 — отстойник; 10 — хранилище смолы; 11 — хранилище аммиачной воды; 12 — аммиачная колонна; 13 — подогреватель газа; 14 — сатуратор; 15 — каплеотбойник; 16 — бензольный скруббер; 17 — подогреватель насыщенного масла; 18 — бензольная колонна; 19 — холодильник для масла; СБ — сырой бензол; Г- обратный газ; См -смола; СФ — сульфат; СВ — сточные воды.

Применение кокса
Слайд 21

Применение кокса

В доменной печи кокс сгорает и образуется оксид углерода (IV): С + О2 = СО2 + Q, который взаимодействует с раскаленным коксом с образованием оксида углерода (II): С + СO2 = 2CO – Q Оксид углерода (II) и является восстановителем железа, сначала из оксида железа (III) образуется оксид железа (II, III)
Слайд 22

В доменной печи кокс сгорает и образуется оксид углерода (IV): С + О2 = СО2 + Q, который взаимодействует с раскаленным коксом с образованием оксида углерода (II): С + СO2 = 2CO – Q Оксид углерода (II) и является восстановителем железа, сначала из оксида железа (III) образуется оксид железа (II, III), затем оксид железа (II) и, наконец, железо: 3Fe2O3 + CO = 2Fe3O4 + CO2 + Q Fe3O4 + CO = 3FeO + CO2 – Q FeO + CO = Fe + CO2 + Q

Доменная печь

Кроме кокса при сухой перегонке каменного угля образуются также летучие продукты, при охлаждении которых до 25-75 С образуется каменноугольная смола, аммиачная вода и газообразные продукты. Каменноугольная смола подвергается фракционной перегонке, в результате чего получают несколько фракций: - легк
Слайд 23

Кроме кокса при сухой перегонке каменного угля образуются также летучие продукты, при охлаждении которых до 25-75 С образуется каменноугольная смола, аммиачная вода и газообразные продукты. Каменноугольная смола подвергается фракционной перегонке, в результате чего получают несколько фракций: - легкое масло (температура кипения до 170 С) в нем содержится ароматические углеводороды (бензол, толуол, кислоты и др. вещества); - среднее масло (температура кипения 170-230 С). Это фенолы, нафталин; - тяжелое масло (температура кипения 230-270 С). Это нафталин и его гомологи - антраценовое масло – антрацен, фенатрен и др.

В состав газообразных продуктов (коксового газа) входят: Бензол; Толуол; Ксиолы; Фенол; Аммиак и др. вещ. Из коксового газа после очистки от аммиака, сероводорода и цианистых соединений извлекают сырой бензол, из которого выделяют отдельные углеводороды и ряд других ценных веществ.
Слайд 24

В состав газообразных продуктов (коксового газа) входят: Бензол; Толуол; Ксиолы; Фенол; Аммиак и др. вещ. Из коксового газа после очистки от аммиака, сероводорода и цианистых соединений извлекают сырой бензол, из которого выделяют отдельные углеводороды и ряд других ценных веществ.

Продукты, получаемые при обработке коксового газа. Из коксового газа углеводороды извлекают промывкой в скрубберах жидкими поглотительными маслами. После отгонки от масла, разгонки из фракции, очистки и повторной ректификации получают чистые товарные продукты, как-то: бензол, толуол, ксилолы и др. И
Слайд 25

Продукты, получаемые при обработке коксового газа

Из коксового газа углеводороды извлекают промывкой в скрубберах жидкими поглотительными маслами. После отгонки от масла, разгонки из фракции, очистки и повторной ректификации получают чистые товарные продукты, как-то: бензол, толуол, ксилолы и др. Из непредельных соединений, содержащихся в сыром бензоле, получают кумароновые смолы, использующиеся для производства лаков, красок, линолеума и в резиновой промышленности. Перспективным сырьем является также циклопентадиен, который также получают из каменного угля. Каменный уголь – сырье для получения нафталина и других индивидуальных ароматических углеводородов. Важнейшими продуктами переработки являются пиридиновые основания и фенолы.

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ. Уже начиная с добычи угля происходит деформация биосферы
Слайд 26

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ

Уже начиная с добычи угля происходит деформация биосферы

Основная проблема при использовании каменного угля – огромное количество выбросов, в частности парниковых газов. Выбрасывается около 44% от всех выбросов СО2. В течение года выброс происходит неравномерно.
Слайд 27

Основная проблема при использовании каменного угля – огромное количество выбросов, в частности парниковых газов. Выбрасывается около 44% от всех выбросов СО2. В течение года выброс происходит неравномерно.

По уровню производственного травматизма угольная промышленность занимает в производственной сфере печальное лидирующее положение Для угольной отрасли характерен низкий уровень санитарно-гигиенической безопасности условий труда.
Слайд 28

По уровню производственного травматизма угольная промышленность занимает в производственной сфере печальное лидирующее положение Для угольной отрасли характерен низкий уровень санитарно-гигиенической безопасности условий труда.

Серьезные экологические проблемы возникают в районах размещения золошлаковых отходов угольных ТЭС и при хранении.
Слайд 29

Серьезные экологические проблемы возникают в районах размещения золошлаковых отходов угольных ТЭС и при хранении.

ПЕРЕРАБОТКА КАМЕННОГО УГЛЯ. КОКСОВАНИЕ ГИДРОГЕНИЗАЦИЯ ГАЗОФИКАЦИЯ ПОЛУКОКСОВАНИЕ
Слайд 30

ПЕРЕРАБОТКА КАМЕННОГО УГЛЯ

КОКСОВАНИЕ ГИДРОГЕНИЗАЦИЯ ГАЗОФИКАЦИЯ ПОЛУКОКСОВАНИЕ

Коксование — процесс переработки жидкого и твёрдого топлива нагреванием без доступа воздуха. При разложении топлива образуются твёрдый продукт — кокс и летучие продукты. Кокс - серое, чуть серебристое, пористое и очень твердое вещество, более чем на 96% состоящее из углерода и получаемое при нагрева
Слайд 31

Коксование — процесс переработки жидкого и твёрдого топлива нагреванием без доступа воздуха. При разложении топлива образуются твёрдый продукт — кокс и летучие продукты.

Кокс - серое, чуть серебристое, пористое и очень твердое вещество, более чем на 96% состоящее из углерода и получаемое при нагревании каменного угля или нефтяных пеков без доступа воздуха при 950-1050°С.

Этот широко распространённый технологический процесс состоит из 3 стадий: 1) подготовка к коксованию; 2)собственно коксование; 3)улавливание и переработка летучих продуктов.
Слайд 32

Этот широко распространённый технологический процесс состоит из 3 стадий: 1) подготовка к коксованию; 2)собственно коксование; 3)улавливание и переработка летучих продуктов.

Стадии коксования. Подготовка включает обогащение, измельчение до зёрен размером около 3 мм, смешение нескольких сортов угля, сушка полученной «шихты». Для коксования шихту загружают в коксовую печь. Каналы боковых простенков печей обогреваются продуктами сгорания газов. Продолжительность нагрева со
Слайд 33

Стадии коксования

Подготовка включает обогащение, измельчение до зёрен размером около 3 мм, смешение нескольких сортов угля, сушка полученной «шихты». Для коксования шихту загружают в коксовую печь. Каналы боковых простенков печей обогреваются продуктами сгорания газов. Продолжительность нагрева составляет 14-16 часов. Температура процесса — 900—1050 °C. Полученный кокс (75-78 % от массы исходного угля) в виде «коксового пирога» (спёкшейся в пласт массы) — выталкивается «коксовыталкивателями» в железнодорожные вагоны, в которых охлаждается («тушится») водой или инертным газом (азотом). Парогазовая смесь выделяющихся летучи продуктов (до 25 % от массы угля) отводится через газосборник для улавливания и переработки. Для разделения летучие продукты охлаждают впрыскиванием распыленной воды (от 700 °C до 80 °C) — при этом из паровой фазы выделяется большая часть смол, дальнейшее охлаждение парогазовой смеси проводят в кожухотрубчатых холодильниках (до 25-35 °С). Конденсаты объединяют и отстаиванием выделяют надсмольную воду и каменноугольную смолу. Затем сырой коксовый газ последовательно очищают от NH3 и H2S, промывают поглотительным маслом , серной кислотой.

Схема коксовой батареи
Слайд 34

Схема коксовой батареи

Схема коксования: Схема коксования: 1 – коксовая батарея; 2 – сборный канал продуктов горения; 3 – газопровод; 4 – отделитель конденсата; 5 – газовый холодильник; 6 – электрофильтр; 7 – газодувка; 8 – трубопровод для отвода конденсата; 9 – отстойник; 10 – хранилище смолы; 11 – хранилище аммиачной во
Слайд 35

Схема коксования:

Схема коксования: 1 – коксовая батарея; 2 – сборный канал продуктов горения; 3 – газопровод; 4 – отделитель конденсата; 5 – газовый холодильник; 6 – электрофильтр; 7 – газодувка; 8 – трубопровод для отвода конденсата; 9 – отстойник; 10 – хранилище смолы; 11 – хранилище аммиачной воды; 12 – аммиачная колонна; 13 – сатуратор; 14 – бензольный скруббер; 15 – бензольная колонка.

Способы очистки коксового газа от H2S. Сухой Мокрый. Сухая очистка коксового газа от сероводорода основана на применении твердых поглотителей – гидроксида железа (III) Fe(OH)3 (болотной руды) и активиро-ванного угля. Этот метод обеспечивает глубокую (тонкую) очистку и служит вспомогательным при мокр
Слайд 36

Способы очистки коксового газа от H2S

Сухой Мокрый

Сухая очистка коксового газа от сероводорода основана на применении твердых поглотителей – гидроксида железа (III) Fe(OH)3 (болотной руды) и активиро-ванного угля. Этот метод обеспечивает глубокую (тонкую) очистку и служит вспомогательным при мокрой очистке. Он может использоваться для доочистки газа, который передается на дальнее расстояние.

1. Методы, основанные на получении концентрированного газообразного H2S с последующим окислением его в серу или серную кислоту: H2S + ОН– ⇔ HS– + Н2О H2S + 2ОН– ⇔ S–2 + 2Н2О 2. Методы основаны на непосредственном окислении H2S, содержащегося в коксовом газе, в элементарную серу: 2H2S + О2 = 2S + 2Н2О 3. Методы, основанные на одновременном улавливании аммиака и сероводорода.

Образование HСN при коксовании. При коксовании каменных углей образуются цианистые соединения: дициан (СN)2 и цианистый водород НСN или цианистоводородная кислота (синильная кислота). Содержание дициана в коксовом газе невелико, поэтому содержащиеся цианистые соединения в газе относят главным образо
Слайд 37

Образование HСN при коксовании

При коксовании каменных углей образуются цианистые соединения: дициан (СN)2 и цианистый водород НСN или цианистоводородная кислота (синильная кислота). Содержание дициана в коксовом газе невелико, поэтому содержащиеся цианистые соединения в газе относят главным образом к цианистому водороду. В цианистый водород переходит до 2% азота, содержащегося в угле. Цианистый водород – продукт вторичных реакций, протекающих между аммиаком, углеродом и углеводородами. Одной из таких реакций является взаимодействие аммиака с углеродом кокса: NH3 + С —→ + Н2.

С повышением температуры коксования, снижением влажности шихты и увеличением высоты коксовой камеры выход цианистого водорода повышается.

Очистка коксового газа от HCN. Сухая очистка газа от цианистого водорода болотной рудой – наиболее простой метод и осуществляется попутно с поглощением сероводорода. Степень извлечения цианистого водорода болотной рудой достаточно высока (85–95%). В результате некоторых реакций цианистый водород ока
Слайд 38

Очистка коксового газа от HCN

Сухая очистка газа от цианистого водорода болотной рудой – наиболее простой метод и осуществляется попутно с поглощением сероводорода. Степень извлечения цианистого водорода болотной рудой достаточно высока (85–95%). В результате некоторых реакций цианистый водород оказывается связанным в болотной руде в виде Fе(СN)2 и главным образом в виде Fе7(СN)18, однако эти соединения не выделяются из поглотительной массы и полностью теряются.

1. Полисульфидная очистка (полусильфидом натрия) с получением двухводной соли роданистого натрия. Степень очистки - 95%: HСN + Nа2СO3 = NаСN + NаНСО3 NаСN + Na2Sn = NaСNS + Nа2Sn-1; 2. Полисульфидная очистка с получением роданистого аммония (поглотитель полисульфид аммония). Степень очистки 80–85%: (NH4)2Sn + NH3 + HCN = NH4CNS + (NH4)2Sn-1 (NH4)2Sn-1 + S = (NH4)2Sn.

Мышьяково - содовая сероочистка. Цех мышьяково-содовой сероочистки состоит из следующих отделений: Улавливания сероводорода и регенерации поглотительного раствора; Плавки и кристаллизации серы; Приготовления содового и мышьякового раствора; 4. Нейтрализации отработанного раствора.
Слайд 39

Мышьяково - содовая сероочистка

Цех мышьяково-содовой сероочистки состоит из следующих отделений: Улавливания сероводорода и регенерации поглотительного раствора; Плавки и кристаллизации серы; Приготовления содового и мышьякового раствора; 4. Нейтрализации отработанного раствора.

Вакуум - карбонатная сероочистка. Цех очистки коксового газа от сероводорода вакуум-карбонатным методом включает: 1. Отделение улавливания и регенерации насыщенного поглотительного раствора 2. Отделение получения серной кислоты методом мокрого катализа. Для улавливания сероводорода из коксового газа
Слайд 40

Вакуум - карбонатная сероочистка

Цех очистки коксового газа от сероводорода вакуум-карбонатным методом включает: 1. Отделение улавливания и регенерации насыщенного поглотительного раствора 2. Отделение получения серной кислоты методом мокрого катализа.

Для улавливания сероводорода из коксового газа используются водные растворы соды (Na2CO3) или поташа (K2CO3).

Из 1 т шихты с влажностью 6% в процессе коксования получают в среднем следующие продукты:
Слайд 41

Из 1 т шихты с влажностью 6% в процессе коксования получают в среднем следующие продукты:

Региональная структура производства кокса
Слайд 42

Региональная структура производства кокса

Процесс переработки твердых горючих ископаемых нагреванием без доступа воздуха при 500-600°С (при температуре, примерно вдвое более низкой, чем температура коксования) с целью получения гл. обр. твердого остатка (полукокса), а также летучих продуктов. Сырье - обычно бурые угли и горючие сланцы, реже
Слайд 43

Процесс переработки твердых горючих ископаемых нагреванием без доступа воздуха при 500-600°С (при температуре, примерно вдвое более низкой, чем температура коксования) с целью получения гл. обр. твердого остатка (полукокса), а также летучих продуктов. Сырье - обычно бурые угли и горючие сланцы, реже - каменные угли и торф.

Методы полукоксования. через стенку печи от горячих дымовых газов, движущихся по каналам, обогревающих систему (П. с внешним обогревом); путем непосредственного соприкосновения газообразного или твердого теплоносителя со слоем топлива (П. с внутр. обогревом). Осуществляются в специальных печах и опр
Слайд 44

Методы полукоксования

через стенку печи от горячих дымовых газов, движущихся по каналам, обогревающих систему (П. с внешним обогревом); путем непосредственного соприкосновения газообразного или твердого теплоносителя со слоем топлива (П. с внутр. обогревом).

Осуществляются в специальных печах и определяются способом передачи теплоты топливу:

Процесс превращения высокомолекулярных веществ органической массы угля (ОМУ) под давлением водорода в жидкие и газообразные продукты при 400-500 °С в присутствии различных веществ - орг. растворителей, катализаторов и т.д. Научные основы этого процесса были разработаны в начале 20 в. В. Н. Ипатьевым
Слайд 45

Процесс превращения высокомолекулярных веществ органической массы угля (ОМУ) под давлением водорода в жидкие и газообразные продукты при 400-500 °С в присутствии различных веществ - орг. растворителей, катализаторов и т.д.

Научные основы этого процесса были разработаны в начале 20 в. В. Н. Ипатьевым, Н. Д. Зелинским, Ф. Бергиусом, Ф. Фишером и др.

Прямая гидрогенизация угля является перспективным методом получения углеводородов. В настоящее время известно несколько освоенных промышленностью способов: Процесс Бергиуса — некаталитическая прямая гидрогенизация; Процесс Шрёдера — гидрогенизация угля в смеси с 1 % масс. молибденового катализатора,
Слайд 46

Прямая гидрогенизация угля является перспективным методом получения углеводородов. В настоящее время известно несколько освоенных промышленностью способов: Процесс Бергиуса — некаталитическая прямая гидрогенизация; Процесс Шрёдера — гидрогенизация угля в смеси с 1 % масс. молибденового катализатора, в состав реакционной смеси входят: смесь жидких углеводородов — «нафта», ограниченные количества углеводородных газов C3-C4, лёгкого жидкого топлива C5-C10, NH3, значительные количества CO2.

Стадии гидрогенизации угля. Подготовка угля; Сушка (влага ~ 1,5%); Нанесение катализатора (из растворов солей в количестве 1-5% от массы угля); Углемасляную пасту в смеси с циркулирующим водородсодержащим газом нагревают в системе теплообмена и трубчатой печи и затем направляют на гидрогенизацию в р
Слайд 47

Стадии гидрогенизации угля

Подготовка угля; Сушка (влага ~ 1,5%); Нанесение катализатора (из растворов солей в количестве 1-5% от массы угля); Углемасляную пасту в смеси с циркулирующим водородсодержащим газом нагревают в системе теплообмена и трубчатой печи и затем направляют на гидрогенизацию в реактор; Гидрогенизацию осуществляют в трех или четырех последовательно расположенных цилиндрических пустотелых реакторах; Продукты реакции разделяют в сепараторе на парогазовую смесь и тяжелый остаток – шлам.

паС. Схема гидрогенизации угля
Слайд 48

паС

Схема гидрогенизации угля

Из первого потока выделяют: жидкие продукты (масло, воду); газ (к-рый после отделения предельных углеводородов (С1-С4), NH3, H2S, CO2 и СО, Н2О обогащают 95-97%-ным Н2 и возвращают в процесс). Шлам разделяют на: жидкие продукты (после отделения воды подвергают дистилляции на фракцию с т. кип. до 325
Слайд 49

Из первого потока выделяют: жидкие продукты (масло, воду); газ (к-рый после отделения предельных углеводородов (С1-С4), NH3, H2S, CO2 и СО, Н2О обогащают 95-97%-ным Н2 и возвращают в процесс). Шлам разделяют на: жидкие продукты (после отделения воды подвергают дистилляции на фракцию с т. кип. до 325-400 °С и остаток, который возвращают в процесс для приготовления пасты) ; твердый остаток.

Продукты гидрогенизации

Процесс превращения твердых топлив (углей, торфа, сланцев) в горючий газ, состоящий гл. обр. из СО и Н2, при высокой т-ре в присутствии окислителя (газифицирующего агента). Проводится в газогенераторах (поэтому получаемые газы называются генераторными). Газификацию твердых топлив можно рассматривать
Слайд 50

Процесс превращения твердых топлив (углей, торфа, сланцев) в горючий газ, состоящий гл. обр. из СО и Н2, при высокой т-ре в присутствии окислителя (газифицирующего агента). Проводится в газогенераторах (поэтому получаемые газы называются генераторными). Газификацию твердых топлив можно рассматривать как неполное окисление углерода.

Основные реакции. Наиболее часто окислителями служат О2 (реакция 1), СО2 (2) и водяной пар (3): Наряду с основными реакциями осуществляются следующие:
Слайд 51

Основные реакции

Наиболее часто окислителями служат О2 (реакция 1), СО2 (2) и водяной пар (3):

Наряду с основными реакциями осуществляются следующие:

"... настанет, вероятно, со временем даже такая эпоха, что угля из земли вынимать не будут, а там в земле его сумеют превращать в горючие газы..." (1888). Д. И. Менделеев : Позднее в 1912 году эту же идею высказал У. Рамзай. В. И. Ленин в статье "Одна из великих побед техники" вы
Слайд 52

"... настанет, вероятно, со временем даже такая эпоха, что угля из земли вынимать не будут, а там в земле его сумеют превращать в горючие газы..." (1888)

Д. И. Менделеев :

Позднее в 1912 году эту же идею высказал У. Рамзай. В. И. Ленин в статье "Одна из великих побед техники" высоко оценил идею Подземной газификации углей и ее преимущества перед шахтным методом добычи угля. СССР принадлежит приоритет в разработке (с 1930) и внедрении технических решений П. г. у.

Подземная газификация угля. Осуществляется под действием высокой температуры (1000-2000 °С) и подаваемого под давлением дутья - различных окислителей (как правило, воздуха, О2 и водяного пара, реже-СО2). Для подвода дутья и отвода газа газификацию проводят в скважинах, расположенных в определенном п
Слайд 53

Подземная газификация угля

Осуществляется под действием высокой температуры (1000-2000 °С) и подаваемого под давлением дутья - различных окислителей (как правило, воздуха, О2 и водяного пара, реже-СО2). Для подвода дутья и отвода газа газификацию проводят в скважинах, расположенных в определенном порядке и образующих так называемый подземный генератор. В нем идут те же хим. реакции, что и в обычных газогенераторах.

Газ, производимый путем П. г. у., применяют для энергетических нужд (в осн. как котельное топливо). Себестоимость газа (в пересчете на условное топливо) ниже себестоимости угля, добываемого шахтным способом, и выше себестоимости угля открытой добычи

ХАРАКТЕРИСТИКА ГАЗА, ПОЛУЧЕННОГО ГАЗИФИКАЦИЕЙ УГЛЯ НА ВОЗДУШНОМ ДУТЬЕ
Слайд 54

ХАРАКТЕРИСТИКА ГАЗА, ПОЛУЧЕННОГО ГАЗИФИКАЦИЕЙ УГЛЯ НА ВОЗДУШНОМ ДУТЬЕ

Источники информации: http://www.chem.asu.ru/org/cpk/spk06.pdf; http://ru.wikipedia.org/wiki/%D0%A3%D0%B3%D0%BB%D0%B5%D1%85%D0%B8%D0%BC%D0%B8%D1%8F; http://www.xumuk.ru/encyklopedia/1029.html; Калея и ц И. В., Химия гидрогенпзационных процессов в переработке топлив, М., 1973; Кричко А. А., Лебедев В
Слайд 55

Источники информации:

http://www.chem.asu.ru/org/cpk/spk06.pdf; http://ru.wikipedia.org/wiki/%D0%A3%D0%B3%D0%BB%D0%B5%D1%85%D0%B8%D0%BC%D0%B8%D1%8F; http://www.xumuk.ru/encyklopedia/1029.html; Калея и ц И. В., Химия гидрогенпзационных процессов в переработке топлив, М., 1973; Кричко А. А., Лебедев В. В, Фарберов И. Л., Нетопливное использование углей, М, 1978. А. А. Кричко.; http://www.xumuk.ru/encyklopedia/1029.html; http://www.xumuk.ru/encyklopedia/2/3625.html; Федосеев С. Д., Чернышев А. Б., Полукоксование и газификация твердого топлива, М., 1960; Кузнецов Д. Т , Эпергохимическое использование горючих сланцев, М., 1978; Наумов Л. С , Соболев Л Д , На орбите кокса, М., 1984, с. 16-17; ГлущенкоИМ, Химическая технология горючих ископаемых, К., 1985;

Лавров Н. В., Шурыгин А. П., Введение в теорию горения и газификации топлива, М., 1962; Альтшулер В. С, К ли ри ко в Г. В., Медведев В. А., Термодинамика процессов получения газов заданного состава из горючих ископаемых, М., 1969; Эпик И., "Известия АН ЭССР. Сер. Геология", 1982, т. 31, № 2, с. 42-55; его же, "Известия АН ЭССР. Сер. Химия", 1983, т. 32, № 2, с. 81-97; Химические вещества из угля, пер. с нем., под ред. И. В. Калечица, М., 1980. Э.Э. Шпильрайн.

СПАСИБО ЗА ВНИМАНИЕ !!!
Слайд 56

СПАСИБО ЗА ВНИМАНИЕ !!!

Список похожих презентаций

Каменный уголь

Каменный уголь

Образование угля. Для образования угля необходимо обильное накопление растительной массы. В древних торфяных болотах, начиная с девонского периода, ...
Экономическая география России

Экономическая география России

География – есть способ познания окружающего мира. География переводится как «землеописание». География начиналась как страноведение и развивалось ...
Экономическая география

Экономическая география

Экономика. это «наука, изучающая распределение редких ресурсов между альтернативными способами их конечного использования»  Человеческим языком: ...
Социальная и экономическая география мира

Социальная и экономическая география мира

Мы изучаем мировое хозяйство. Во всех частях земного шара имеются свои, даже очень любопытные, другие части. Козьма Прутков. Оглавление. 1.Понятие ...
Социально-экономическая география Аргентины

Социально-экономическая география Аргентины

Протяженность Аргентины с Севера на Юг составляет около 3800 км и около 1400 км с запада на восток. На Юге и Западе Аргентина граничит с Чили, на ...
Социально-экономическая география мира

Социально-экономическая география мира

Экономическая и социальная география мира. Учебник для 10 класса. В.П. Максаковский Атлас. Издательство “Картография” Контурные карты. Источники в ...
Кроссворд "Экономическая география и регионалистика"

Кроссворд "Экономическая география и регионалистика"

К какой группе по классификации ООН относится подавляющее число стран из Зарубежной Азии? Огромными запасами этого ресурса славятся такие страны как ...
Химия и география

Химия и география

Блиц-опрос. Дайте определения понятиям: Атом Молекула Ион Диффузия Физическое явление. Выпишите явления, которые относятся к физическим? А) замерзание ...
Что такое социальная география

Что такое социальная география

ДЛЯ ЧЕГО НУЖНО ИЗУЧАТЬ ГЕОГРАФИЮ НАСЕЛЕНИЯ? ЗНАНИЯ ПО «ГЕОГРАФИИ НАСЕЛЕНИЯ» ЭТО:. (*)ТОЛЕРАНТНОСТЬ = «ТЕРПИМОСТЬ» - УВАЖИТЕЛЬНОЕ ОТНОШЕНИЕ К ПРЕДСТАВИТЕЛЯМ ...
Урал – каменный пояс Земли Русской

Урал – каменный пояс Земли Русской

Повторение. 1. Почему Кавказ молодые горы? 2. Докажите, что это молодые горы. 3. Почему западные части Предкавказья получают больше осадков, чем восточные? ...
Физическая география

Физическая география

Распределение воды и суши по земному шару:. Суша занимает менее 1/3 поверхности Земли. На Земле преобладает синий цвет её морей и океанов. Занимающих ...
Физическая география

Физическая география

Требования к подготовке к уроку:. Ученик готов к уроку, если… У него на столе лежит учебник, атлас контурные карты тетрадь. Требования к ведению тетрадей:. ...
Тюменская область история, география, экономика

Тюменская область история, география, экономика

ТЮМЕНСКАЯ ОБЛАСТЬ. Тюменская область была образована 14 августа 1944 года. Физическая карта Тюменской области. Тюменская область - один из крупнейших ...
Глобальная география

Глобальная география

Тип занятия: лекция Технология: ИТ. Форма работы: лекция, фронтальная (1 час). План лекции Что изучает глобальная география. Интеграция глобальной ...
география железных руд в мире

география железных руд в мире

Доля различных технологий в странах – ведущих продуцентах стали, % (по данным World Steel Association). Потребление стальной продукции в мире в 2009г., ...
Урал – каменный пояс земли русской

Урал – каменный пояс земли русской

Цели и задачи урока:. 1.Расширить и обобщить знания учащихся о природе Урала. 2.Развивать знания учащихся о причинно-следственных связях в природе ...
Физическая география России

Физическая география России

«…Широко ты, Русь, По лицу земли В красе царственной Развернулася !» И.С.Никитин. Физическая география изучает природу и природные ресурсы России. ...
Что изучает география?

Что изучает география?

География. География - наука о природе земной поверхности, о населении и его хозяйственной деятельности. «ге» - Земля «графо» - пишу Эратосфен Землеописание. ...
Современная география

Современная география

Цели урока:. • выяснить, как и с помощью каких способов изучают Землю; • показать связь географии с практической деятельностью человека; • выяснить, ...
Природная география

Природная география

Объяснительная записка. Элективный курс «Рекреационная география Сибирского ФО» рассчитана на 18 часов и предназначен для изучения в социально-экономическом ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:4 ноября 2018
Категория:География
Содержит:56 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации