Презентация "Статика" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31

Презентацию на тему "Статика" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 31 слайд(ов).

Слайды презентации

Учитель: Попова И.А. МОУ СОШ № 30 Белово 2010. Статика. Подготовка к ЕГЭ
Слайд 1

Учитель: Попова И.А. МОУ СОШ № 30 Белово 2010

Статика. Подготовка к ЕГЭ

Цель: повторение основных понятий, законов и формул статики в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ 2010: Момент силы Условия равновесия твердого тела Закон Паскаля Закон Архимеда
Слайд 2

Цель: повторение основных понятий, законов и формул статики в соответствии с кодификатором ЕГЭ.

Элементы содержания, проверяемые на ЕГЭ 2010: Момент силы Условия равновесия твердого тела Закон Паскаля Закон Архимеда

Статика. Различные виды равновесия шара на опоре. (1) – безразличное равновесие, (2) – неустойчивое равновесие, (3) – устойчивое равновесие. Статикой называется раздел механики, изучающий условия равновесия тел.
Слайд 3

Статика

Различные виды равновесия шара на опоре. (1) – безразличное равновесие, (2) – неустойчивое равновесие, (3) – устойчивое равновесие

Статикой называется раздел механики, изучающий условия равновесия тел.

Момент силы. Момент силы (крутящий момент; вращательный момент; вертящий момент; вращающий момент) — векторная физическая величина, равная произведению радиус-вектора проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.
Слайд 4

Момент силы

Момент силы (крутящий момент; вращательный момент; вертящий момент; вращающий момент) — векторная физическая величина, равная произведению радиус-вектора проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело. Различают Момент силы относительно центра (точки) и относительно оси.

Момент силы относительно центра О величина векторная. Модуль момента силы: Mo = Fr, где F - модуль силы, a r - плечо, т. е. длина перпендикуляра, опущенного из О на линию действия силы Направлен вектор Mo перпендикулярно плоскости, проходящей через центр О и силу, в сторону, откуда поворот, совершае
Слайд 5

Момент силы относительно центра О величина векторная. Модуль момента силы: Mo = Fr, где F - модуль силы, a r - плечо, т. е. длина перпендикуляра, опущенного из О на линию действия силы Направлен вектор Mo перпендикулярно плоскости, проходящей через центр О и силу, в сторону, откуда поворот, совершаемый силой, виден против хода часовой стрелки.

Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю: Силы, действующие на рычаг, и их моменты. M1 = F1 · d1 > 0; M2 = – F2 · d2 
Слайд 6

Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

Силы, действующие на рычаг, и их моменты. M1 = F1 · d1 > 0; M2 = – F2 · d2 

Условия равновесия твердого тела. Равновесие твердого тела под действием трех сил. Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю. При вычислении равнодействующей все силы приводятся к одной точке C
Слайд 7

Условия равновесия твердого тела

Равновесие твердого тела под действием трех сил.

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю. При вычислении равнодействующей все силы приводятся к одной точке C

Закон Паскаля. На тело, погруженное в жидкость или газ, действуют силы, распределенные по поверхности тела. Давление определяется как отношение модуля силы действующей перпендикулярно поверхности, к площади S этой поверхности: Закон Паскаля: давление в жидкости или газе передается во всех направлени
Слайд 8

Закон Паскаля

На тело, погруженное в жидкость или газ, действуют силы, распределенные по поверхности тела. Давление определяется как отношение модуля силы действующей перпендикулярно поверхности, к площади S этой поверхности: Закон Паскаля: давление в жидкости или газе передается во всех направлениях одинаково и не зависит от ориентации площадки, на которую оно действует. Давление жидкости на дно или боковые стенки сосуда зависит от высоты столба жидкости. Давление столба жидкости ρgh называют гидростатическим давлением. Полное давление в жидкости на глубине h можно записать в виде:

Закон Архимеда. Из-за разности давлений в жидкости на разных уровнях возникает выталкивающая или архимедова сила. Закон Архимеда: Архимедова сила, действующая на погруженное в жидкость (или газ) тело, равна весу жидкости (или газа), вытесненной телом.
Слайд 9

Закон Архимеда

Из-за разности давлений в жидкости на разных уровнях возникает выталкивающая или архимедова сила

Закон Архимеда: Архимедова сила, действующая на погруженное в жидкость (или газ) тело, равна весу жидкости (или газа), вытесненной телом.

Следствия закона Архимеда. Если средняя плотность тела больше плотности жидкости (или газа) ρт > ρ, тело будет опускаться на дно. Если же ρт  FA Fт
Слайд 10

Следствия закона Архимеда

Если средняя плотность тела больше плотности жидкости (или газа) ρт > ρ, тело будет опускаться на дно. Если же ρт  FA Fт

В сообщающихся сосудах любой формы, заполненных однородной жидкостью, давления в любой точке на одном и том же уровне одинаковы «Золотое правило механики»: произведение силы на расстояние остается неизменным Гидравлическая машина:
Слайд 11

В сообщающихся сосудах любой формы, заполненных однородной жидкостью, давления в любой точке на одном и том же уровне одинаковы «Золотое правило механики»: произведение силы на расстояние остается неизменным Гидравлическая машина:

Рассмотрим задачи: ЕГЭ 2001-2010 (Демо) ГИА-9 2008-2010 (Демо)
Слайд 12

Рассмотрим задачи:

ЕГЭ 2001-2010 (Демо) ГИА-9 2008-2010 (Демо)

2008 г. (ГИА-9)5. Ученик опускал кубик льда и яйцо поочередно в сосуды А, Б и В, в которых находились три жидкости: вода, спирт и раствор соли в воде. На диаграмме указаны плотности этих жидкостей, льда и яйца. В каком сосуде находится спирт, а в каком – вода? В сосуде А – спирт, в сосуде Б – вода В
Слайд 13

2008 г. (ГИА-9)5. Ученик опускал кубик льда и яйцо поочередно в сосуды А, Б и В, в которых находились три жидкости: вода, спирт и раствор соли в воде. На диаграмме указаны плотности этих жидкостей, льда и яйца. В каком сосуде находится спирт, а в каком – вода?

В сосуде А – спирт, в сосуде Б – вода В сосуде А – спирт, в сосуде В – вода В сосуде В – спирт, в сосуде А – вода В сосуде В – спирт, в сосуде Б – вода

2008 г. (ГИА-9). 5. В открытом сосуде 1 и закрытом сосуде 2 находится вода. Если открыть кран К, то. вода обязательно будет перетекать из сосуда 2 в сосуд вода обязательно будет перетекать из сосуда 1 в сосуд 2 вода перетекать не будет ни при каких обстоятельствах перемещение жидкостей будет зависет
Слайд 14

2008 г. (ГИА-9). 5. В открытом сосуде 1 и закрытом сосуде 2 находится вода. Если открыть кран К, то

вода обязательно будет перетекать из сосуда 2 в сосуд вода обязательно будет перетекать из сосуда 1 в сосуд 2 вода перетекать не будет ни при каких обстоятельствах перемещение жидкостей будет зависеть от давления в воздушном зазоре сосуда 2

2008 г. (ГИА-9). 5. Брусок в форме прямоугольного параллелепипеда положили на стол сначала узкой гранью (1), а затем – широкой (2). Сравните силы давления (F1 и F2) и давления, производимые бруском на стол в этих случаях (р1 и р2). F1  p2 F1 = F2; p1 = p2
Слайд 15

2008 г. (ГИА-9). 5. Брусок в форме прямоугольного параллелепипеда положили на стол сначала узкой гранью (1), а затем – широкой (2). Сравните силы давления (F1 и F2) и давления, производимые бруском на стол в этих случаях (р1 и р2).

F1 p2 F1 = F2; p1 = p2

(ГИА 2009 г.) 15. Необходимо экспериментально установить, зависит ли выталкивающая сила от объема погруженного в жидкость тела. Имеется три набора металлических цилиндров из алюминия и меди. Какой набор можно использовать для опыта? А или Б или В только А только Б
Слайд 16

(ГИА 2009 г.) 15. Необходимо экспериментально установить, зависит ли выталкивающая сила от объема погруженного в жидкость тела. Имеется три набора металлических цилиндров из алюминия и меди. Какой набор можно использовать для опыта?

А или Б или В только А только Б

2010 г. (ГИА-9). 8. В одинаковые сосуды с холодной водой опустили нагретые до 1000С сплошные шары одинакового объема, в первый сосуд — из меди, а во второй — из цинка. После достижения состояния теплового равновесия оказалось, что в сосудах установилась разная температура. В каком из сосудов окажетс
Слайд 17

2010 г. (ГИА-9). 8. В одинаковые сосуды с холодной водой опустили нагретые до 1000С сплошные шары одинакового объема, в первый сосуд — из меди, а во второй — из цинка. После достижения состояния теплового равновесия оказалось, что в сосудах установилась разная температура. В каком из сосудов окажется более высокая температура?

В первом сосуде, так как удельная теплоемкость меди больше удельной теплоемкости цинка. В первом сосуде, так как плотность меди больше плотности цинка. Во втором сосуде, так как удельная теплоемкость цинка больше удельной теплоемкости меди. Во втором сосуде, так как плотность цинка больше плотности меди.

2010 г. (ГИА-9). 19. В сосуд, частично заполненный водой, опускают на нити свинцовый шарик из положения 1 в положение 2 (см. рисунок). Как при этом изменяются сила тяжести и выталкивающая сила, действующие на шарик, а также давление воды на дно сосуда? Для каждой величины определите соответствующий
Слайд 18

2010 г. (ГИА-9). 19. В сосуд, частично заполненный водой, опускают на нити свинцовый шарик из положения 1 в положение 2 (см. рисунок). Как при этом изменяются сила тяжести и выталкивающая сила, действующие на шарик, а также давление воды на дно сосуда? Для каждой величины определите соответствующий характер изменения: 1) увеличилась 2) уменьшилась 3) не изменилась Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

3 1

ЕГЭ-2001 г. А3. На весах стоит чаша с водой. В чашу опустили гирю так, что она не касается дна (см. рисунок). Изменятся ли показания весов и почему? не изменится, т.к. гиря не касается дна и не давит на него увеличится, т.к. гиря давит на воду частью своего веса увеличится, т.к. масса гири добавилас
Слайд 19

ЕГЭ-2001 г. А3. На весах стоит чаша с водой. В чашу опустили гирю так, что она не касается дна (см. рисунок). Изменятся ли показания весов и почему?

не изменится, т.к. гиря не касается дна и не давит на него увеличится, т.к. гиря давит на воду частью своего веса увеличится, т.к. масса гири добавилась к массе воды уменьшится, т.к. вода выталкивает гирю

(ЕГЭ 2001 г., Демо) А16. В стакане с водой плавает брусок льда (см. рисунок). После того, как лед растает, уровень воды в стакане. . . поднимется, т.к. объем ледяного бруска больше объема вытесненной им воды. опустится, т.к. плотность льда меньше плотности воды. останется на прежнем уровне, т.к. мас
Слайд 20

(ЕГЭ 2001 г., Демо) А16. В стакане с водой плавает брусок льда (см. рисунок). После того, как лед растает, уровень воды в стакане. . .

поднимется, т.к. объем ледяного бруска больше объема вытесненной им воды. опустится, т.к. плотность льда меньше плотности воды. останется на прежнем уровне, т.к. масса льда равна массе воды. поднимется, т.к. воды станет больше.

ЕГЭ-2002 г. А3. На рычаг действуют две силы, плечи которых равны 0,1 м и 0,3 м. Сила, действующая на короткое плечо, равна 3 Н. Чему должна быть равна сила, действующая на длинное плечо, чтобы рычаг был в равновесии? 1 Н 6 Н 9 Н 12 Н F1 · d1 = F2 · d2. 3 Н  ·  0,1 м = F2 ·  0,3 м
Слайд 21

ЕГЭ-2002 г. А3. На рычаг действуют две силы, плечи которых равны 0,1 м и 0,3 м. Сила, действующая на короткое плечо, равна 3 Н. Чему должна быть равна сила, действующая на длинное плечо, чтобы рычаг был в равновесии?

1 Н 6 Н 9 Н 12 Н F1 · d1 = F2 · d2

3 Н  ·  0,1 м = F2 ·  0,3 м

ЕГЭ-2002 г. А6. Теплоход переходит из устья Волги в соленое Каспийское море. При этом архимедова сила, действующая на теплоход, Уменьшается не изменяется увеличивается уменьшается или увеличивается в зависимости от размера теплохода
Слайд 22

ЕГЭ-2002 г. А6. Теплоход переходит из устья Волги в соленое Каспийское море. При этом архимедова сила, действующая на теплоход,

Уменьшается не изменяется увеличивается уменьшается или увеличивается в зависимости от размера теплохода

ЕГЭ-2003 г. А4. На рисунке изображен тонкий невесомый стержень, к которому в точках 1 и 3 приложены силы F1 = 100 Н и F2 = 300 Н. В какой точке надо расположить ось вращения, чтобы стержень находился в равновесии? Ось вращения закреплена. 2 6 4 5
Слайд 23

ЕГЭ-2003 г. А4. На рисунке изображен тонкий невесомый стержень, к которому в точках 1 и 3 приложены силы F1 = 100 Н и F2 = 300 Н. В какой точке надо расположить ось вращения, чтобы стержень находился в равновесии? Ось вращения закреплена.

2 6 4 5

ЕГЭ-2003 г. А5. Рычаг находится в равновесии под действием двух сил. Сила F1 = 4 H. Какова сила F2, если плечо силы F1 равно 15 см, а плечо силы F2 равно 10 см? 4 Н 0,16 Н 6 Н 2,7 Н
Слайд 24

ЕГЭ-2003 г. А5. Рычаг находится в равновесии под действием двух сил. Сила F1 = 4 H. Какова сила F2, если плечо силы F1 равно 15 см, а плечо силы F2 равно 10 см?

4 Н 0,16 Н 6 Н 2,7 Н

2004 г. А4 (ДЕМО). При взвешивании груза в воздухе показание динамометра равно 2 Н. При опускании груза в воду показание динамометра уменьшается до 1,5 Н. Выталкивающая сила равна. 0,5 Н 1,5 Н 2 Н 3,5 Н
Слайд 25

2004 г. А4 (ДЕМО). При взвешивании груза в воздухе показание динамометра равно 2 Н. При опускании груза в воду показание динамометра уменьшается до 1,5 Н. Выталкивающая сила равна

0,5 Н 1,5 Н 2 Н 3,5 Н

2005 г. А4 (ДЕМО). Груз А колодезного журавля (см. рисунок) уравновешивает вес ведра, равный 100 Н. (Рычаг считайте невесомым.) Вес груза равен. 20 Н 25 Н 400 Н 500 Н
Слайд 26

2005 г. А4 (ДЕМО). Груз А колодезного журавля (см. рисунок) уравновешивает вес ведра, равный 100 Н. (Рычаг считайте невесомым.) Вес груза равен

20 Н 25 Н 400 Н 500 Н

2006 г. А5 (ДЕМО). Четыре одинаковых листа фанеры толщиной L каждый, связанные в стопку, плавают в воде так, что уровень воды соответствует границе между двумя средними листами. Если в стопку добавить еще один такой же лист, то глубина погружения стопки листов увеличится на
Слайд 27

2006 г. А5 (ДЕМО). Четыре одинаковых листа фанеры толщиной L каждый, связанные в стопку, плавают в воде так, что уровень воды соответствует границе между двумя средними листами. Если в стопку добавить еще один такой же лист, то глубина погружения стопки листов увеличится на

2007 г. А5 (ДЕМО). В широкую U-образную трубку с вертикальными прямыми коленами налиты неизвестная жидкость плотностью 1 и вода плотностью 2 = 1,0103 кг/м3 (см. рисунок). На рисунке b = 10 см, h = 24 см, H = 30 см. Плотность жидкости 1 равна
Слайд 28

2007 г. А5 (ДЕМО). В широкую U-образную трубку с вертикальными прямыми коленами налиты неизвестная жидкость плотностью 1 и вода плотностью 2 = 1,0103 кг/м3 (см. рисунок). На рисунке b = 10 см, h = 24 см, H = 30 см. Плотность жидкости 1 равна

2008 г. А2 (ДЕМО). Льдинку, плавающую в стакане с пресной водой, перенесли в стакан с соленой водой. При этом архимедова сила, действующая на льдинку, 1) уменьшилась, так как плотность пресной воды меньше плотности соленой 2) уменьшилась, так как уменьшилась глубина погружения льдинки в воду 3) увел
Слайд 29

2008 г. А2 (ДЕМО). Льдинку, плавающую в стакане с пресной водой, перенесли в стакан с соленой водой. При этом архимедова сила, действующая на льдинку,

1) уменьшилась, так как плотность пресной воды меньше плотности соленой 2) уменьшилась, так как уменьшилась глубина погружения льдинки в воду 3) увеличилась, так как плотность соленой воды выше, чем плотность пресной воды 4) не изменилась, так как выталкивающая сила равна весу льдинки в воздухе

2008 г. А5 (ДЕМО). При выполнении лабораторной работы ученик установил наклонную плоскость под углом 60 к поверхности стола. Длина плоскости равна 0,6 м. Момент силы тяжести бруска массой 0,1 кг относительно точки О при прохождении им середины наклонной плоскости равен. 0,15 Нм 0,30 Нм 0,45 Нм 0
Слайд 30

2008 г. А5 (ДЕМО). При выполнении лабораторной работы ученик установил наклонную плоскость под углом 60 к поверхности стола. Длина плоскости равна 0,6 м. Момент силы тяжести бруска массой 0,1 кг относительно точки О при прохождении им середины наклонной плоскости равен

0,15 Нм 0,30 Нм 0,45 Нм 0,60 Нм

Используемая литература. Берков, А.В. и др. Самое полное издание типовых вариантов реальных заданий ЕГЭ 2010, Физика [Текст]: учебное пособие для выпускников. ср. учеб. заведений / А.В. Берков, В.А. Грибов. – ООО "Издательство Астрель", 2009. – 160 с. Касьянов, В.А. Физика, 11 класс [Текст
Слайд 31

Используемая литература

Берков, А.В. и др. Самое полное издание типовых вариантов реальных заданий ЕГЭ 2010, Физика [Текст]: учебное пособие для выпускников. ср. учеб. заведений / А.В. Берков, В.А. Грибов. – ООО "Издательство Астрель", 2009. – 160 с. Касьянов, В.А. Физика, 11 класс [Текст]: учебник для общеобразовательных школ / В.А. Касьянов. – ООО "Дрофа", 2004. – 116 с. Момент силы. ВикипедиЯ [текст, рисунок]/http://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BC%D0%B5%D0%BD%D1%82_%D1%81%D0%B8%D0%BB%D1%8B Мякишев, Г.Я. и др. Физика. 11 класс [Текст]: учебник для общеобразовательных школ / учебник для общеобразовательных школ Г.Я. Мякишев, Б.Б. Буховцев . –" Просвещение ", 2009. – 166 с. Открытая физика [текст, рисунки]/ http://www.physics.ru Подготовка к ЕГЭ /http://egephizika Силы в механике/ http://egephizika.26204s024.edusite.ru/DswMedia/mehanika3.htm Три закона Ньютона / http://rosbrs.ru/konkurs/web/2004 Федеральный институт педагогических измерений. Контрольные измерительные материалы (КИМ) Физика //[Электронный ресурс]// http://fipi.ru/view/sections/92/docs/

Список похожих презентаций

Статика в физике

Статика в физике

Это раздел механики, в котором изучается условия равновесия абсолютно твердых тел. В статике учитываются размеры и формы тел и все рассматриваемые ...
Статика и равновесие

Статика и равновесие

Цели и задачи нашего урока:. Применить знания, полученные при изучении данной темы, в повседневной жизни. Продолжить формировать умения обобщать и ...
Статика

Статика

- это раздел механики, изучающий условия равновесия тел. Различные виды равновесия шара на опоре:. (1) – безразличное равновесие, (2) – неустойчивое ...

Конспекты

Статика

Статика

Методическая разработка урока по теме «Статика». 10 класс. Программа. . Авторы: С.А. Тихомирова, Б. М. Яворский. Физика 10-11 классы. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Физика
Автор презентации:Попова И.А.
Содержит:31 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации