Презентация "Электростатика" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43
Слайд 44
Слайд 45
Слайд 46
Слайд 47
Слайд 48
Слайд 49
Слайд 50
Слайд 51
Слайд 52
Слайд 53
Слайд 54
Слайд 55
Слайд 56
Слайд 57
Слайд 58
Слайд 59
Слайд 60

Презентацию на тему "Электростатика" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 60 слайд(ов).

Слайды презентации

Кузнецов Сергей Иванович доцент кафедры ОФ ЕНМФ ТПУ. Электростатика
Слайд 1

Кузнецов Сергей Иванович доцент кафедры ОФ ЕНМФ ТПУ

Электростатика

2.1. Силовые линии электростатического поля 2.2. Поток вектора напряженности 2.3. Теорема Остроградского-Гаусса 2.4. Дифференциальная форма теоремы Остроградского-Гаусса 2.5. Вычисление электростатических полей с помощью теоремы Остроградского-Гаусса 2.5.1. Поле бесконечной однородно заряженной плос
Слайд 2

2.1. Силовые линии электростатического поля 2.2. Поток вектора напряженности 2.3. Теорема Остроградского-Гаусса 2.4. Дифференциальная форма теоремы Остроградского-Гаусса 2.5. Вычисление электростатических полей с помощью теоремы Остроградского-Гаусса 2.5.1. Поле бесконечной однородно заряженной плоскости 2.5.2. Поле двух равномерно заряженных плоскостей 2.5.3. Поле заряженного бесконечного цилиндра (нити) 2.5.4. Поле двух коаксиальных цилиндров с одинаковой линейной плотностью заряда, но разным знаком 2.5.5. Поле заряженного пустотелого шара 2.5.6. Поле объемного заряженного шара

Тема 2. ТЕОРЕМА ОСТРОГРАДСКОГО-ГАУССА

2.1. Силовые линии электростатического поля 2.2. Поток вектора напряженности 2.3. Теорема Остроградского-Гаусса 2.4. Дифференциальная форма теоремы Остроградского-Гаусса 2.5. Вычисление электростатических полей с помощью теоремы Остроградского - Гаусса 2.5.1. Поле бесконечной однородно заряженной плоскости 2.5.2. Поле двух равномерно заряженных плоскостей 2.5.3. Поле заряженного бесконечного цилиндра (нити) 2.5.4. Поле двух коаксиальных цилиндров с одинаковой линейной плотностью заряда, но разным знаком 2.5.5. Поле заряженного пустотелого шара 2.5.6. Поле объемного заряженного шара

2.1. Силовые линии электростатического поля. Теорема Остроградского-Гаусса, которую мы докажем и обсудим позже, устанавливает связь между электрическими зарядами и электрическим полем. Она представляет собой более общую и более изящную формулировку закона Кулона.
Слайд 3

2.1. Силовые линии электростатического поля

Теорема Остроградского-Гаусса, которую мы докажем и обсудим позже, устанавливает связь между электрическими зарядами и электрическим полем. Она представляет собой более общую и более изящную формулировку закона Кулона.

Остроградский Михаил Васильевич (1801 – 1862) отечественный математик и механик. Учился в Харьковском ун-те (1816 – 1820), совершенствовал знания в Париже (1822 – 1827). Основные работы в области математического анализа, математической физики, теоретической механики. Решил ряд важных задач гидродина
Слайд 4

Остроградский Михаил Васильевич (1801 – 1862) отечественный математик и механик. Учился в Харьковском ун-те (1816 – 1820), совершенствовал знания в Париже (1822 – 1827). Основные работы в области математического анализа, математической физики, теоретической механики. Решил ряд важных задач гидродинамики, теории теплоты, упругости, баллистики, электростатики, в частности задачу распространения волн на поверхности жидкости (1826 г.). Получил дифференциальное уравнение распространения тепла в твердых телах и жидкостях. Известен тео­ремой Остроградского-Гаусса в электро­статике (1828 г.).

Гаусс Карл Фридрих (1777 – 1855) немецкий математик, астроном и физик. Исследования посвящены многим разделам физики. В 1832 г. создал абсолютную систему мер (СГС), введя три основных единицы: единицу времени – 1 с, единицу длины – 1 мм, единицу массы – 1 мг. В 1833 г. совмест­но с В. Вебером постро
Слайд 5

Гаусс Карл Фридрих (1777 – 1855) немецкий математик, астроном и физик. Исследования посвящены многим разделам физики. В 1832 г. создал абсолютную систему мер (СГС), введя три основных единицы: единицу времени – 1 с, единицу длины – 1 мм, единицу массы – 1 мг. В 1833 г. совмест­но с В. Вебером построил первый в Герма­нии электромагнитный телеграф. Еще в 1845 г. пришел к мысли о конечной скорости распростране­ния электромагнитных взаимодействий. Изу­чал земной магнетизм, изобрел в 1837 г. униполярный магнитометр, в 1838 г. – бифилярный. В 1829 г. Сформулировал принцип наименьшего принуждения (принцип Гаусса). Один из первых высказал в 1818 г. предположение о возможности существования неевклидовой геометрии.

Основная ценность теоремы Остроградского-Гаусса состоит в том, что она позволяет глубже понять природу электростатического поля и устанавливает более общую связь между зарядом и полем.
Слайд 6

Основная ценность теоремы Остроградского-Гаусса состоит в том, что она позволяет глубже понять природу электростатического поля и устанавливает более общую связь между зарядом и полем.

силовые линии – это линии, касательная к которым в любой точке поля совпадает с направлением вектора напряженности
Слайд 7

силовые линии – это линии, касательная к которым в любой точке поля совпадает с направлением вектора напряженности

Однородным называется электростатическое поле, во всех точках которого напряженность одинакова по величине и направлению, т.е. Однородное электростатическое поле изображается параллельными силовыми линиями на равном расстоянии друг от друга
Слайд 8

Однородным называется электростатическое поле, во всех точках которого напряженность одинакова по величине и направлению, т.е. Однородное электростатическое поле изображается параллельными силовыми линиями на равном расстоянии друг от друга

В случае точечного заряда, линии напряженности исходят из положительного заряда и уходят в бесконечность; и из бесконечности входят в отрицательный заряд. Т.к. то густота силовых линий обратно пропорциональна квадрату расстояния от заряда
Слайд 9

В случае точечного заряда, линии напряженности исходят из положительного заряда и уходят в бесконечность; и из бесконечности входят в отрицательный заряд. Т.к.

то густота силовых линий обратно пропорциональна квадрату расстояния от заряда

Для системы зарядов, как видим, силовые линии направлены от положительного заряда к отрицательному
Слайд 10

Для системы зарядов, как видим, силовые линии направлены от положительного заряда к отрицательному

Густота силовых линий должна быть такой, чтобы единичную площадку, нормальную к вектору напряженности пересекало такое их число, которое равно модулю вектора напряженности , т.е.
Слайд 12

Густота силовых линий должна быть такой, чтобы единичную площадку, нормальную к вектору напряженности пересекало такое их число, которое равно модулю вектора напряженности , т.е.

если на рисунке выделить площадку то напряженность изображенного поля будет равна
Слайд 13

если на рисунке выделить площадку то напряженность изображенного поля будет равна

2.2. Поток вектора напряженности. Полное число силовых линий, проходящих через поверхность S называется потоком вектора напряженности Ф через эту поверхность В векторной форме можно записать – скалярное произведение двух векторов, где вектор .
Слайд 14

2.2. Поток вектора напряженности

Полное число силовых линий, проходящих через поверхность S называется потоком вектора напряженности Ф через эту поверхность В векторной форме можно записать – скалярное произведение двух векторов, где вектор .

Таким образом, поток вектора есть скаляр, который в зависимости от величины угла α может быть как положительным, так и отрицательным.
Слайд 15

Таким образом, поток вектора есть скаляр, который в зависимости от величины угла α может быть как положительным, так и отрицательным.

Для первого рисунка – поверхность А1 окружает положительный заряд и поток здесь направлен наружу, т.е. Поверхность А2 – окружает отрицательный заряд, здесь и направлен внутрь. Общий поток через поверхность А равен нулю. Опишите второй рисунок самостоятельно.
Слайд 16

Для первого рисунка – поверхность А1 окружает положительный заряд и поток здесь направлен наружу, т.е.

Поверхность А2 – окружает отрицательный заряд, здесь и направлен внутрь.

Общий поток через поверхность А равен нулю. Опишите второй рисунок самостоятельно.

2.3. Теорема Остроградского-Гаусса. Итак, по определению, поток вектора напряженности электрического поля равен числу линий напряженности, пересекающих поверхность S.
Слайд 17

2.3. Теорема Остроградского-Гаусса

Итак, по определению, поток вектора напряженности электрического поля равен числу линий напряженности, пересекающих поверхность S.

поток вектора напряженности через произвольную элементарную площадку dS будет равен: Т.е. в однородном поле В произвольном электрическом поле
Слайд 18

поток вектора напряженности через произвольную элементарную площадку dS будет равен: Т.е. в однородном поле В произвольном электрическом поле

Подсчитаем поток вектора через произвольную замкнутую поверхность S, окружающую точечный заряд q . Окружим заряд q сферой S1.
Слайд 19

Подсчитаем поток вектора через произвольную замкнутую поверхность S, окружающую точечный заряд q . Окружим заряд q сферой S1.

Центр сферы совпадает с центром заряда. Радиус сферы S1 равен R1. В каждой точке поверхности S1 проекция Е на направление внешней нормали одинакова и равна
Слайд 20

Центр сферы совпадает с центром заряда. Радиус сферы S1 равен R1. В каждой точке поверхности S1 проекция Е на направление внешней нормали одинакова и равна

Тогда поток через S1
Слайд 21

Тогда поток через S1

Подсчитаем поток через сферу S2, имеющую радиус R2:
Слайд 22

Подсчитаем поток через сферу S2, имеющую радиус R2:

Из непрерывности линии следует, что поток и через любую произвольную поверхность S будет равен этой же величине: – теорема Гаусса для одного заряда.
Слайд 23

Из непрерывности линии следует, что поток и через любую произвольную поверхность S будет равен этой же величине: – теорема Гаусса для одного заряда.

Для любого числа произвольно расположенных зарядов, находящихся внутри поверхности: – теорема Гаусса для нескольких зарядов. Поток вектора напряженности электрического поля через замкнутую поверхность в вакууме равен алгебраической сумме всех зарядов, расположенных внутри поверхности, деленной на ε0
Слайд 24

Для любого числа произвольно расположенных зарядов, находящихся внутри поверхности: – теорема Гаусса для нескольких зарядов. Поток вектора напряженности электрического поля через замкнутую поверхность в вакууме равен алгебраической сумме всех зарядов, расположенных внутри поверхности, деленной на ε0.

Полный поток проходящий через S3, не охватывающую заряд q, равен нулю:
Слайд 25

Полный поток проходящий через S3, не охватывающую заряд q, равен нулю:

Таким образом, для точечного заряда q, полный поток через любую замкнутую поверхность S будет равен: – если заряд расположен внутри замкнутой поверхности; – если заряд расположен вне замкнутой поверхности; этот результат не зависит от формы поверхности, и знак потока совпадает со знаком заряда.
Слайд 26

Таким образом, для точечного заряда q, полный поток через любую замкнутую поверхность S будет равен: – если заряд расположен внутри замкнутой поверхности; – если заряд расположен вне замкнутой поверхности; этот результат не зависит от формы поверхности, и знак потока совпадает со знаком заряда.

Электрические заряды могут быть «размазаны» с некоторой объемной плотностью различной в разных местах пространства: Здесь dV – физически бесконечно малый объем, под которым следует понимать такой объем, который с одной стороны достаточно мал, чтобы в пределах его плотность заряда считать одинаковой,
Слайд 27

Электрические заряды могут быть «размазаны» с некоторой объемной плотностью различной в разных местах пространства: Здесь dV – физически бесконечно малый объем, под которым следует понимать такой объем, который с одной стороны достаточно мал, чтобы в пределах его плотность заряда считать одинаковой, а с другой – достаточно велик, чтобы не могла проявиться дискретность заряда, т.е. то, что любой заряд кратен целому числу элементар-ных зарядов электрона или протона .

Суммарный заряд объема dV будет равен: Тогда из теоремы Гаусса можно получить: – это ещё одна форма записи теоремы Остроградского-Гаусса, если заряд неравномерно распределен по объему.
Слайд 28

Суммарный заряд объема dV будет равен: Тогда из теоремы Гаусса можно получить: – это ещё одна форма записи теоремы Остроградского-Гаусса, если заряд неравномерно распределен по объему.

2.4. Дифференциальная форма теоремы Остроградского-Гаусса. Пусть заряд распределен в пространстве V, с объемной плотностью . Тогда
Слайд 29

2.4. Дифференциальная форма теоремы Остроградского-Гаусса

Пусть заряд распределен в пространстве V, с объемной плотностью . Тогда

Теперь устремим , стягивая его к интересующей нас точке. Очевидно, что при этом будет стремиться к ρ в данной точке, т.е. Величину, являющуюся пределом отношения к V, при , называют дивергенцией поля Е и обозначается .
Слайд 30

Теперь устремим , стягивая его к интересующей нас точке. Очевидно, что при этом будет стремиться к ρ в данной точке, т.е. Величину, являющуюся пределом отношения к V, при , называют дивергенцией поля Е и обозначается .

Дивергенция поля Е .	(2.4.1) Аналогично определяется дивергенция любого другого векторного поля. Из этого определения следует, что дивергенция является скалярной функцией координат. В декартовой системе координат
Слайд 31

Дивергенция поля Е . (2.4.1) Аналогично определяется дивергенция любого другого векторного поля. Из этого определения следует, что дивергенция является скалярной функцией координат. В декартовой системе координат

Итак, (2.4.3) Это теорема Остроградского-Гаусса в дифференциальной форме. Написание многих формул упрощается, если ввести векторный дифференциальный оператор (Набла) где i, j, k – орты осей (единичные векторы).
Слайд 32

Итак, (2.4.3) Это теорема Остроградского-Гаусса в дифференциальной форме. Написание многих формул упрощается, если ввести векторный дифференциальный оператор (Набла) где i, j, k – орты осей (единичные векторы).

Сам по себе оператор смысла не имеет. Он приобретает смысл в сочетании с векторной или скалярной функцией, на которую символично умножается: дифференциальная форма теоремы Остроградского-Гаусса.
Слайд 33

Сам по себе оператор смысла не имеет. Он приобретает смысл в сочетании с векторной или скалярной функцией, на которую символично умножается: дифференциальная форма теоремы Остроградского-Гаусса.

В тех точках поля, где – (положительные заряды) источники поля, где – стоки (отрицательные заряды). Линии выходят из источников и заканчиваются в стоках.
Слайд 34

В тех точках поля, где – (положительные заряды) источники поля, где – стоки (отрицательные заряды). Линии выходят из источников и заканчиваются в стоках.

2.5. Вычисление электрических полей с помощью теоремы Остроградского-Гаусса 2.5.1. Поле бесконечной однородно заряженной плоскости
Слайд 35

2.5. Вычисление электрических полей с помощью теоремы Остроградского-Гаусса 2.5.1. Поле бесконечной однородно заряженной плоскости

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле: dq – заряд, сосредоточенный на площади dS; dS – физически бесконечно малый участок поверхности.
Слайд 36

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле: dq – заряд, сосредоточенный на площади dS; dS – физически бесконечно малый участок поверхности.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости Тогда
Слайд 37

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости Тогда

Суммарный поток через замкнутую поверхность (цилиндр) будет равна: Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского-Гаусса получим: откуда видно, что напряженность поля плоскости S равна: (2.5.1)
Слайд 38

Суммарный поток через замкнутую поверхность (цилиндр) будет равна: Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского-Гаусса получим: откуда видно, что напряженность поля плоскости S равна: (2.5.1)

2.5.2. Поле двух равномерно заряженных плоскостей. Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ
Слайд 39

2.5.2. Поле двух равномерно заряженных плоскостей

Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей. Тогда внутри плоскостей Вне плоскостей напряженность поля Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных разм
Слайд 40

Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей. Тогда внутри плоскостей Вне плоскостей напряженность поля Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор).

Распределение напряженности электростатического поля между пластинами конденсатора показано на рисунке:
Слайд 41

Распределение напряженности электростатического поля между пластинами конденсатора показано на рисунке:

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин): т.е. Механические силы, действующие между заряженными телами, называют пондермоторными.
Слайд 42

Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин): т.е. Механические силы, действующие между заряженными телами, называют пондермоторными.

Сила притяжения между пластинами конденсатора: где S – площадь обкладок конденсатора. Т.к. Это формула для расчета пондермоторной силы
Слайд 43

Сила притяжения между пластинами конденсатора: где S – площадь обкладок конденсатора. Т.к. Это формула для расчета пондермоторной силы

2.5.3. Поле заряженного бесконечного цилиндра (нити). Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью где dq – заряд, сосредоточенный на отрезке цилиндра
Слайд 44

2.5.3. Поле заряженного бесконечного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью где dq – заряд, сосредоточенный на отрезке цилиндра

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси).
Слайд 45

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси).

Для оснований цилиндров для боковой поверхности т.е. зависит от расстояния r. Следовательно, поток вектора через рассматриваемую поверхность, равен
Слайд 46

Для оснований цилиндров для боковой поверхности т.е. зависит от расстояния r. Следовательно, поток вектора через рассматриваемую поверхность, равен

При на поверхности будет заряд По теореме Остроградского-Гаусса Тогда Если , т.к. внутри замкнутой поверхности зарядов нет.
Слайд 47

При на поверхности будет заряд По теореме Остроградского-Гаусса Тогда Если , т.к. внутри замкнутой поверхности зарядов нет.

Графически распределение напряженности электростатического поля цилиндра показано на рис
Слайд 48

Графически распределение напряженности электростатического поля цилиндра показано на рис

2.5.4. Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком
Слайд 49

2.5.4. Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком

Внутри меньшего и вне большего цилиндров поле будет отсутствовать В зазоре между цилиндрами, поле определяется так же, как в п. 2.5.3:
Слайд 50

Внутри меньшего и вне большего цилиндров поле будет отсутствовать В зазоре между цилиндрами, поле определяется так же, как в п. 2.5.3:

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор). Таким образом для коаксиальных цилиндров имеем:
Слайд 51

Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор).

Таким образом для коаксиальных цилиндров имеем:

2.5.5. Поле заряженного пустотелого шара
Слайд 52

2.5.5. Поле заряженного пустотелого шара

Вообразим вокруг шара – сферу радиуса r (рис).
Слайд 53

Вообразим вокруг шара – сферу радиуса r (рис).

Если то внутрь воображаемой сферы попадет весь заряд q, распределенный по сфере, тогда откуда поле вне сферы: Внутри сферы, при поле будет равно нулю, т.к. там нет зарядов:
Слайд 54

Если то внутрь воображаемой сферы попадет весь заряд q, распределенный по сфере, тогда откуда поле вне сферы: Внутри сферы, при поле будет равно нулю, т.к. там нет зарядов:

Как видно, вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы.
Слайд 55

Как видно, вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы.

2.5.6. Поле объемного заряженного шара. Для поля вне шара радиусом R получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула:
Слайд 56

2.5.6. Поле объемного заряженного шара

Для поля вне шара радиусом R получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула:

Внутри шара при сферическая поверхность будет содержать в себе заряд, равный где ρ – объемная плотность заряда: объем шара: Тогда по теореме Остроградского-Гаусса запишем
Слайд 57

Внутри шара при сферическая поверхность будет содержать в себе заряд, равный где ρ – объемная плотность заряда: объем шара: Тогда по теореме Остроградского-Гаусса запишем

Т.е. внутри шара Т.е., внутри шара имеем
Слайд 58

Т.е. внутри шара Т.е., внутри шара имеем

Таким образом, имеем: поле объемного заряженного шара
Слайд 59

Таким образом, имеем: поле объемного заряженного шара

Список похожих презентаций

Электростатика (Диагностико-коррекционный тест)

Электростатика (Диагностико-коррекционный тест)

I    Тело заряжено отрицательно тогда, когда сумма всех положительных зарядов в теле…. равна сумме всех отрицательных зарядов в нем; больше суммы отрицательных ...
Электростатика Лекция

Электростатика Лекция

2.1. Силовые линии электростатического поля 2.2. Поток вектора напряженности 2.3. Теорема Остроградского-Гаусса 2.4. Дифференциальная форма теоремы ...
Электростатика

Электростатика

Что может электростатика Цель урока: объяснить физический смысл электрических явлений. Отыщи всему начало и ты многое поймёшь”. (Козьма Прутков.) ...
Электростатика

Электростатика

Электризация трением. + —. Перераспределение зарядов. Электризация через влияние (электростатическая индукция). электроскоп -. Линии напряженности ...
Электростатика

Электростатика

Электрический заряд – это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия. Существует ...
Электростатика

Электростатика

Электродинамика-раздел физики, в котором изучают электромагнитное взаимодействие между электрически заряженными телами и частицами. Электромагнитным ...
Электростатика

Электростатика

Тип урока: Урок повторения, оценки и коррекции знаний и способов деятельности. Цель урока: Обеспечить повторение знаний и способов деятельности учащихся ...
Электростатика

Электростатика

ЗАДАЧИ УРОКА. Аккумулировать знаний об электростатическом поле, научиться объяснять физические явления, решать задачи, чётко излагать мысли, высказывать ...
Электростатика

Электростатика

ПРОВЕРЬ СЕБЯ. Составить текст 1.Тела состоят из… 2.Молекулы состоят из… 3. Атомы состоят из… 4.Ядра состоят из… А. …протонов и нейтронов Б. … ядра ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 января 2015
Категория:Физика
Содержит:60 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации