- Гипотезы о происхождении солнечной системы

Презентация "Гипотезы о происхождении солнечной системы" (10 класс) по астрономии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25

Презентацию на тему "Гипотезы о происхождении солнечной системы" (10 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Астрономия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 25 слайд(ов).

Слайды презентации

Лекция 8 Гипотезы о происхождении Солнечной системы
Слайд 1

Лекция 8 Гипотезы о происхождении Солнечной системы

Общие сведения о нашей галактике. Наша Галактика - Млечный путь - гигантский диск, диаметр которого около 100 тыс. световых лет, а толщина - около 1500 световых лет. Галактика может быть представлена в виде спиральной структуры: туманности и горячие массивные звезды распределены вдоль ветвей спирали
Слайд 2

Общие сведения о нашей галактике. Наша Галактика - Млечный путь - гигантский диск, диаметр которого около 100 тыс. световых лет, а толщина - около 1500 световых лет. Галактика может быть представлена в виде спиральной структуры: туманности и горячие массивные звезды распределены вдоль ветвей спирали.

Наша галактика включает более 200 млрд. звезд разной светимости и цвета. За "окрестности Солнца" принято принимать тот объем Галактики, в котором современными средствами возможно можно наблюдать и изучать звезды разных типов. Этот объем состоит примерно из 1,5 тысячи звезд.
Слайд 3

Наша галактика включает более 200 млрд. звезд разной светимости и цвета. За "окрестности Солнца" принято принимать тот объем Галактики, в котором современными средствами возможно можно наблюдать и изучать звезды разных типов. Этот объем состоит примерно из 1,5 тысячи звезд.

Наше Солнце - одна из звезд на периферии Галактики вблизи от ее экваториальной плоскости. Расстояние от Солнца до ядра Галактики составляет около 30 тыс. световых лет. Солнце- желтый карлик, звезда 2-го или 3-го поколения.
Слайд 4

Наше Солнце - одна из звезд на периферии Галактики вблизи от ее экваториальной плоскости. Расстояние от Солнца до ядра Галактики составляет около 30 тыс. световых лет. Солнце- желтый карлик, звезда 2-го или 3-го поколения.

Некоторые факты о Солнечной системе. Время образования - 4.5-5 млрд. лет назад. В Солнечной системе осталось 8 планет. : планеты земной группы — пояс астероидов — планеты-гиганты — пояс Койпера. Основная масса системы сосредоточена в Солнце (99.9%), но 99% момента количества движения («запаса враще
Слайд 5

Некоторые факты о Солнечной системе

Время образования - 4.5-5 млрд. лет назад. В Солнечной системе осталось 8 планет. : планеты земной группы — пояс астероидов — планеты-гиганты — пояс Койпера. Основная масса системы сосредоточена в Солнце (99.9%), но 99% момента количества движения («запаса вращения» системы) связано с движением планет. Все планеты условно делятся на 2 группы: а) Меркурий, Венера, Земля, Марс - планеты небольшого размера с плотностью =3-5.5 г/см3; б) Юпитер, Сатурн, Уран, Нептун - планеты - гиганты с небольшой плотностью =1-2 г/см3; Расстояния планет от Солнца подчиняются эмпирическим формулам и составляют некоторую прогрессию, определяемую правилом Тициуса-Боде. В Солнечной системе имеются метеоры и кометы.

Орбиты всех планет -почти круговые, и все они лежат примерно в плоскости эклиптики (в плоскости Солнечного экватора). Все планеты обращаются вокруг Солнца в одном направлении (совпадающем с направлением вращения Солнца), как и почти все спутники вокруг своих планет.
Слайд 6

Орбиты всех планет -почти круговые, и все они лежат примерно в плоскости эклиптики (в плоскости Солнечного экватора). Все планеты обращаются вокруг Солнца в одном направлении (совпадающем с направлением вращения Солнца), как и почти все спутники вокруг своих планет.

4.3. Гипотезы происхождения Солнечной системы. Объединенная гипотеза Канта-Лапласа: солнечная система возникла из газопылевой туманности. Джеймс Джинс: вблизи Солнца прошла звезда и ее притяжение вызвало выброс солнечного вещества, из которого в последующем образовались планеты
Слайд 7

4.3. Гипотезы происхождения Солнечной системы

Объединенная гипотеза Канта-Лапласа: солнечная система возникла из газопылевой туманности. Джеймс Джинс: вблизи Солнца прошла звезда и ее притяжение вызвало выброс солнечного вещества, из которого в последующем образовались планеты

Хойл: Солнце было двойной звездой, причем вторая звезда прошла весь путь эволюции и взорвалась как сверхновая, сбросив всю оболочку. Из остатков этой оболочки и образовалась планетная система. Отто Шмидт: Солнце захватило при обращении вокруг Галактики облако пыли. Из вещества этого огромного холодн
Слайд 8

Хойл: Солнце было двойной звездой, причем вторая звезда прошла весь путь эволюции и взорвалась как сверхновая, сбросив всю оболочку. Из остатков этой оболочки и образовалась планетная система. Отто Шмидт: Солнце захватило при обращении вокруг Галактики облако пыли. Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела – планетезимали.

Современная теория формирования планетной системы в четыре этапа. Первоначальное газопылевое облако достигло заметной плотности и начало сжиматься под действием гравитационных сил. В процессе сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость
Слайд 9

Современная теория формирования планетной системы в четыре этапа.

Первоначальное газопылевое облако достигло заметной плотности и начало сжиматься под действием гравитационных сил. В процессе сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость вращения облака. что привело к уплощению облака и формированию характерного диска. Центральная часть сжимается самостоятельно и превращается в протозвезду. При достижении некоторой пороговой плотности, частицы пыли начали сталкиваться друг с другом, и таким образом кинетическая энергия сжимающегося газопылевого облака привела к росту температуры. Вокруг протозвезды формируется протопланетное облако – пылевой субдиск. Из-за гравитационной неустойчивости в пылевом субдиске образуются планетезимали. Когда температура в центре протозвезды достигла миллионов кельвинов, в центральной области запустилась термоядерная реакция горения водорода. Протозвезда превратилась в обычную звезду главной последовательности. Во внешней области диска крупные сгущения образовали планеты, вращающиеся вокруг центрального светила примерно в одной плоскости и в одном направлении.

Разряженный межзвездный газ стал собираться в облако. Вся солнечная система, к которой принадлежат Земля и Луна, возникла из одного большого газопылевого облака
Слайд 10

Разряженный межзвездный газ стал собираться в облако

Вся солнечная система, к которой принадлежат Земля и Луна, возникла из одного большого газопылевого облака

Облако сжималось и вращение его ускорялось. Под действием усилившихся при этом центробежных сил облако превратилось в диск. Вещество уплотнилось и преврати- лось в кольцо, вращающееся вокруг центра
Слайд 11

Облако сжималось и вращение его ускорялось

Под действием усилившихся при этом центробежных сил облако превратилось в диск

Вещество уплотнилось и преврати- лось в кольцо, вращающееся вокруг центра

В центре образовался газовый шар, в котором началась термоядерная реакция
Слайд 12

В центре образовался газовый шар, в котором началась термоядерная реакция

В центре образовался большой сгусток вещества. Из этого сгустка возникло Солнце. Во внешних областях сформировались планеты. Постепенно вся планетная система приобрела свой современный вид. Из газовых колец возникли планеты - Солнечная система готова
Слайд 13

В центре образовался большой сгусток вещества. Из этого сгустка возникло Солнце. Во внешних областях сформировались планеты

Постепенно вся планетная система приобрела свой современный вид

Из газовых колец возникли планеты - Солнечная система готова

Планета Земля R(Земли)= 6378 км, М - 5.98•1024 кг.
Слайд 14

Планета Земля R(Земли)= 6378 км, М - 5.98•1024 кг.

Строение Земной коры. Земна́я кора́ — внешняя твёрдая оболочка Земли (геосфера). Ниже коры находится мантия, которая отличается составом и физическими свойствами — она более плотная, содержит в основном тугоплавкие элементы. С внешней стороны большая часть коры покрыта гидросферой, а меньшая находит
Слайд 15

Строение Земной коры

Земна́я кора́ — внешняя твёрдая оболочка Земли (геосфера). Ниже коры находится мантия, которая отличается составом и физическими свойствами — она более плотная, содержит в основном тугоплавкие элементы. С внешней стороны большая часть коры покрыта гидросферой, а меньшая находится под воздействием атмосферы.

Верхняя часть верхней мантии и земная кора – литосфера. Литосфера состоит из отдельных литосферных плит, которые осуществляют движение по астеносфере - размягченном (возможно, частично и жидком) глубинном слое с небольшой вязкостью.
Слайд 16

Верхняя часть верхней мантии и земная кора – литосфера. Литосфера состоит из отдельных литосферных плит, которые осуществляют движение по астеносфере - размягченном (возможно, частично и жидком) глубинном слое с небольшой вязкостью.

Толщина земной коры в километрах
Слайд 17

Толщина земной коры в километрах

Океаническая кора. Толщина океанической коры практически не меняется со временем. В разных географических областях толщина океанической коры колеблется в пределах 5-7 километров.
Слайд 18

Океаническая кора

Толщина океанической коры практически не меняется со временем. В разных географических областях толщина океанической коры колеблется в пределах 5-7 километров.

Континентальная кора. Верхний слой - осадочные породы. Второй слой – гранит и гнейс. Исследования показывают, что большая часть этих пород образовались около 3 миллиардов лет назад.
Слайд 19

Континентальная кора

Верхний слой - осадочные породы. Второй слой – гранит и гнейс. Исследования показывают, что большая часть этих пород образовались около 3 миллиардов лет назад.

Согласно современным представлениям, в составе мантии преобладает сравнительно небольшая группа химических элементов: Si, Mg, Fe, Al, Ca и O. Внутреннее (твердое) и внешнее (жидкое) ядра Земли состоят не только из металлического железа, но также содержат Si, O, S и даже водород. Новые научные данные
Слайд 21

Согласно современным представлениям, в составе мантии преобладает сравнительно небольшая группа химических элементов: Si, Mg, Fe, Al, Ca и O. Внутреннее (твердое) и внешнее (жидкое) ядра Земли состоят не только из металлического железа, но также содержат Si, O, S и даже водород. Новые научные данные позволяют говорить о том, что жидкое ядро Земли больше похоже на желе, чем на жидкость (т.е. имеет достаточно большую вязкость). По мере продвижения к центру Земли вязкость увеличивается, и желе переходит в твердое тело, но не кристаллическое (как предполагалось ранее), а аморфное (т.е. внутреннее твердое ядро на основе железа является стеклом).

Главные черты рельефа Земли - континенты и океаны. Континенты возвышаются над ложем океанов в среднем почти на 6 км; с учетом максимальной глубины океанов (11 км.) и высоты гор (9 км.) оказывается, что размах земного рельефа составляет 20 км. Континенты сложены в основном гранитами и гнейсами (горны
Слайд 22

Главные черты рельефа Земли - континенты и океаны. Континенты возвышаются над ложем океанов в среднем почти на 6 км; с учетом максимальной глубины океанов (11 км.) и высоты гор (9 км.) оказывается, что размах земного рельефа составляет 20 км. Континенты сложены в основном гранитами и гнейсами (горными породами), а ложе океанов состоит из базальтов. Кора континентов намного толще (в среднем 35-40 км.),чем кора океанов (5-7км.).

4.5. Концепция тектоники литосферных плит. Кора современных континентов в основном древняя, в среднем не моложе 2 млрд. лет, а кора океанов нигде не старше 180 млн. лет. Это объясняется тем, что в океанах постоянно происходит процесс обновления коры и именно с этим связано образование основных черт
Слайд 23

4.5. Концепция тектоники литосферных плит. Кора современных континентов в основном древняя, в среднем не моложе 2 млрд. лет, а кора океанов нигде не старше 180 млн. лет. Это объясняется тем, что в океанах постоянно происходит процесс обновления коры и именно с этим связано образование основных черт океанского ложа. Для ранней Земли основная энергия поставлялась радиоактивными распадами некоторых элементов. Разогретые потоки вещества из горячих центральных областей Земли за счет конвекции идут к поверхности планеты, а нисходящие потоки уносят вещество поверхности в глубь Земли. Формировавшаяся литосфера оказалась разбитой на отдельные плиты. Замкнутые конвективные потоки создают горизонтальные направления сил, движущих плиты. Вдоль границ литосферных плит расположены зоны повышенной тектонической активности.

История Пангеи
Слайд 24

История Пангеи

Континенты, окружающие Атлантический океан, когда-то были частями единого массива суши (ПАНГЕИ), расколовшегося около 180 млн. лет назад. Гипотезу дрейфа континентов активно пропагандировал немецкий геофизик Альфред Вегенер, который связал вместе совпадение очертаний береговых линий материков (геомо
Слайд 25

Континенты, окружающие Атлантический океан, когда-то были частями единого массива суши (ПАНГЕИ), расколовшегося около 180 млн. лет назад. Гипотезу дрейфа континентов активно пропагандировал немецкий геофизик Альфред Вегенер, который связал вместе совпадение очертаний береговых линий материков (геоморфологические признаки), продолжение геологических пород возрастом более 180 млн. лет за пределы континентов (геологические признаки), совпадение направлений намагниченности предполагаемых разломов (палеомагнитные данные), сведения о распространении геологических видов и климатических зон (палеоботаника и палеоклиматология).

Список похожих презентаций

Гипотезы происхождения солнечной системы

Гипотезы происхождения солнечной системы

Что такое солнечная система? Солнце и все тела, обращающиеся вокруг него образуют СОЛНЕЧНУЮ СИСТЕМУ. Из чего состоит солнечная система? В состав солнечной ...
Планеты солнечной системы

Планеты солнечной системы

Цель:. 1. Повторить - строение Солнечной системы; - чем звезды отличаются от планет; 2. Расширить знания о планете Земля. 3. Узнать, отчего зависит ...
Характеристики планет солнечной системы

Характеристики планет солнечной системы

Меркурий Радиус= 2439.7 ± 1.0 км S=от 82 до 217 млн км. S=58 млн. км. Плотность: 5.42 г/см3. Скорость: 47,9 км/с. Т(сидер.п)= 87,97 суток. S(синодич.п)=0.317лет. ...
Планеты солнечной системы

Планеты солнечной системы

МЕРКУРИЙ. Ближайшая к Солнцу планета, по размерам похожая на Луну (радиус 2439 км), а по средней плотности (5.42 г/см3) на Землю. Ускорение свободного ...
Альбом солнечной системы

Альбом солнечной системы

Мы живем на планете, которая называется Землей. Она находится в бескрайнем космическом пространстве. В нем множество других планет, миллиарды звезд, ...
Тела солнечной системы

Тела солнечной системы

ЗЕМЛЯ И ЛУНА. ВСПЫШКИ НА СОЛНЦЕ И ПРОТУБЕРАНЕЦ. МЕРКУРИЙ. ВЕНЕРА. МАРС – КРАСНАЯ ЗВЕЗДА. АСТЕРОИДЫ – КАМЕННЫЕ ПУЛИ. ЮПИТЕР – ПЛАНЕТА - ГИГАНТ. САТУРН. ...
Планеты солнечной системы

Планеты солнечной системы

Вопросы к кроссворду:. Небесное тело, видимое простым глазом, в форме светящейся точки на небе. Специалист по астрономии. Наука о небесных телах. ...
Знакомство с малыми телами солнечной системы

Знакомство с малыми телами солнечной системы

Боде. Гершель. Пояс астероидов. Гаспра имеет неправильную форму. На фотографии «Галилео» видны кратеры вплоть до 160 м в поперечнике. Местоположение ...
Знакомство с планетами солнечной системы

Знакомство с планетами солнечной системы

Содержание:. Солнечная система Планеты Как появились планеты Планеты Солнечной системы: Вывод. Меркурий Венера Земля Марс Юпитер Сатурн Уран Нептун. ...
Земля как планета солнечной системы

Земля как планета солнечной системы

Что изучает наука астрономия. Астрономия - древнейшая из наук и самая молодая. Волнующие открытия достигаются сегодня с помощью самых сложных приемов ...
Характеристика планет солнечной системы

Характеристика планет солнечной системы

МЕРКУРИЙ МЕНЬШЕ ЗЕМЛИ В 3 РАЗА. МЕРКУРИЙ И ЗЕМЛЯ. Радиус планеты – 6052 км. Масса планеты – 0,815 массы Земли. Температура планеты – выше 470С Среднее ...
Строение солнечной системы

Строение солнечной системы

Тема урока: Строение солнечной системы. Вся Солнечная система – часть другой большой системы, которая называется галактикой. Так выглядит наша галактика ...
Интерактивная игра "7 чудес Солнечной системы"

Интерактивная игра "7 чудес Солнечной системы"

ПРАВДА ИЛИ ВЫМЫСЕЛ № 7. На поверхности ЭНЦЕЛАДА (спутник Сатурна) обнаружены гигантские трещины. Из них в открытый космос со скоростью 2250 км/ч вырываются ...
Исследование солнечной системы

Исследование солнечной системы

Звёздное небо - Великая книга Природы. «Ищу я в этом мире сочетанья Прекрасного и вечного. Вдали Я вижу ночь: пески среди молчанья И звёздный свет ...
Изучение динамики солнечной системы на основе наблюдений

Изучение динамики солнечной системы на основе наблюдений

. План доклада. Состав и размеры Солнечной системы. Силы взаимодействия в Солнечной системе. Основные задачи динамики Солнечной системы. Методы наблюдений ...
Планеты солнечной системы

Планеты солнечной системы

Венера Земля Сатурн Юпитер Уран Плутон луна Марс Нептун Меркурий. Все планеты движутся вокруг Солнца по огромным кругам – орбитам. Меркурий немного ...
Движение планет солнечной системы

Движение планет солнечной системы

Движение планет Солнечной системы. Говоря о движении планет в Солнечной системе, хочется сказать, что практически все планеты, кометы и астероиды, ...
Планеты солнечной системы. форма. размеры и движение земли

Планеты солнечной системы. форма. размеры и движение земли

Тест по §1-2. ВОПРОСЫ: Какой греческий мореплаватель совершил путешествие вокруг Европы в 320г. до н.э.? Что означает слово «география» на греческом ...
Сравнение планет солнечной системы

Сравнение планет солнечной системы

Основополагающий вопрос. Существует ли жизнь во вселенной кроме человеческой расы? На основе сравнения планет Солнечной системы определить планеты, ...
Планеты солнечной системы

Планеты солнечной системы

Вселенная. Вселенная – это все что существует. В нее входят все звезды, планеты и другие космические тела. Солнце. Cолнце - это обычная звезда, поверхность ...

Конспекты

Определение расстояний до тел Солнечной системы и их размеров

Определение расстояний до тел Солнечной системы и их размеров

Интегрированный урок (. физика + математика. ) в 12 классе. II. вида. Тема: «Определение расстояний до тел Солнечной системы и их размеров. ». ...
Первый закон Ньютона. Инерциальные системы отсчёта

Первый закон Ньютона. Инерциальные системы отсчёта

План урока №_______. Тема :. Первый закон Ньютона. Инерциальные системы отсчёта. Цели урока:. Сформировать понятие об инерциальной системе ...
Инерциальные системы отсчёта. Первый закон Ньютона

Инерциальные системы отсчёта. Первый закон Ньютона

Урок "Инерциальные системы отсчёта. Первый закон Ньютона". Задачи:. Образовательные:. Сформулировать понятие об инерциальной системе отсчёта, ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.