- Образование солнечной системы

Презентация "Образование солнечной системы" (11 класс) по астрономии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21

Презентацию на тему "Образование солнечной системы" (11 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Астрономия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 21 слайд(ов).

Слайды презентации

Образование солнечной системы. МКОУ Кочневская сош
Слайд 1

Образование солнечной системы

МКОУ Кочневская сош

Введение. С древнейших времён учёные – астрологи пытаются больше узнать о том, как образовалась солнечная система. Поэтому моя цель познакомить вас с гипотезами , предположениями об образовании солнечной системы
Слайд 2

Введение

С древнейших времён учёные – астрологи пытаются больше узнать о том, как образовалась солнечная система. Поэтому моя цель познакомить вас с гипотезами , предположениями об образовании солнечной системы

Солнечная система. СОЛНЕЧНАЯ СИСТЕМА, состоит из центрального светила — Солнца и 8 больших планет , обращающихся вокруг него, их спутников, множества малых планет, комет и межпланетной среды.
Слайд 3

Солнечная система

СОЛНЕЧНАЯ СИСТЕМА, состоит из центрального светила — Солнца и 8 больших планет , обращающихся вокруг него, их спутников, множества малых планет, комет и межпланетной среды.

Планеты солнечной системы. Меркурий Венера Земля Марс Юпитер Сатурн Уран Нептун
Слайд 4

Планеты солнечной системы

Меркурий Венера Земля Марс Юпитер Сатурн Уран Нептун

Предположения. В 1755 г. философ Иммануил Кант (1724-1804) высказал предположение о том, что большую роль в образовании планет сыграла конденсация материи в диске, вращающемся вокруг Солнца. Сам диск сформировался в центре облака, в состав которого входили газ и затем пыль.
Слайд 5

Предположения

В 1755 г. философ Иммануил Кант (1724-1804) высказал предположение о том, что большую роль в образовании планет сыграла конденсация материи в диске, вращающемся вокруг Солнца. Сам диск сформировался в центре облака, в состав которого входили газ и затем пыль.

В 1796 г. французский астролог Пьер Симон де Лаплас (1749-1827) предположил, что Солнце продуцировало серию газообразных колец, которые, в свою очередь, после конденсации стали основой планет. Постепенно вокруг разных планет образовалась вращающаяся туманность, из которой сформировались естественные
Слайд 6

В 1796 г. французский астролог Пьер Симон де Лаплас (1749-1827) предположил, что Солнце продуцировало серию газообразных колец, которые, в свою очередь, после конденсации стали основой планет. Постепенно вокруг разных планет образовалась вращающаяся туманность, из которой сформировались естественные спутники.

Образовалась Солнечная система около 4,6 млрд. лет назад из холодного газопылевого облака.
Слайд 7

Образовалась Солнечная система около 4,6 млрд. лет назад из холодного газопылевого облака.

Зарождение солнечной системы. Согласно воззрениям современных астрологов, Солнечная система зародилась из туманности, в состав которой входили газ и частицы пыли. Под воздействием внешнего фактора – не исключено, что это был взрыв близлежащей сверхновой звезды, – туманность начала саморазрушаться.
Слайд 8

Зарождение солнечной системы

Согласно воззрениям современных астрологов, Солнечная система зародилась из туманности, в состав которой входили газ и частицы пыли. Под воздействием внешнего фактора – не исключено, что это был взрыв близлежащей сверхновой звезды, – туманность начала саморазрушаться.

По мере возрастания плотности гравитация усилила процесс разрушения. Все это происходило на фоне медленного вращения, что придало туманности форму диска, в центре которого находился прообраз Солнца. Температура в центре начала повышаться и, наконец, достигла уровня, при котором начали происходить яд
Слайд 9

По мере возрастания плотности гравитация усилила процесс разрушения. Все это происходило на фоне медленного вращения, что придало туманности форму диска, в центре которого находился прообраз Солнца. Температура в центре начала повышаться и, наконец, достигла уровня, при котором начали происходить ядерные реакции.

От частиц к планетам. Первые небесные тела, сформировавшиеся в туманности, имели различные размеры – от нескольких километров до нескольких сот километров. Их называют «планетизмы», следующая стадия их развития – «пропланеты» – прообразы современных планет. Итак, планетизмы представляли собой крупны
Слайд 10

От частиц к планетам

Первые небесные тела, сформировавшиеся в туманности, имели различные размеры – от нескольких километров до нескольких сот километров. Их называют «планетизмы», следующая стадия их развития – «пропланеты» – прообразы современных планет. Итак, планетизмы представляли собой крупные сгустки массы. Они не обладали достаточной гравитацией для того, чтобы принять сферическую форму. Их форма была неправильной..

Затем в течение десятков тысяч лет крупные небесные массы продолжали увеличиваться, их диаметр достиг 100-500 км. Это уже прообразы планет. Постепенно Они принимали шарообразную форму. Существует мнение, что планетам земной группы понадобилось 100 миллионов лет, чтобы от крупных размеров перейти к с
Слайд 11

Затем в течение десятков тысяч лет крупные небесные массы продолжали увеличиваться, их диаметр достиг 100-500 км. Это уже прообразы планет. Постепенно Они принимали шарообразную форму. Существует мнение, что планетам земной группы понадобилось 100 миллионов лет, чтобы от крупных размеров перейти к современным.

Следует отметить, что не из всех крупных небесных масс образовались планеты. Некоторые каменистые и металлосодержащие тела не увеличили массу, а частично превратились в астероиды. Тела, содержащие лед, сгруппировались и образовали ядра комет, большая часть которых притягивается к Солнечной системе и
Слайд 12

Следует отметить, что не из всех крупных небесных масс образовались планеты. Некоторые каменистые и металлосодержащие тела не увеличили массу, а частично превратились в астероиды. Тела, содержащие лед, сгруппировались и образовали ядра комет, большая часть которых притягивается к Солнечной системе из-за гравитации больших планет.

Тепло и холод. Солнце сформировалось и начало излучать энергию около 4,6 миллиарда лет назад. Исходящее от Солнца тепло оказало влияние на состав газа и мельчайшей пыли в различных зонах туманности. Температура в ее центре была очень высокой, в результате небесные фрагменты пришли в твердое состояни
Слайд 13

Тепло и холод

Солнце сформировалось и начало излучать энергию около 4,6 миллиарда лет назад. Исходящее от Солнца тепло оказало влияние на состав газа и мельчайшей пыли в различных зонах туманности. Температура в ее центре была очень высокой, в результате небесные фрагменты пришли в твердое состояние.

И Юпитер, и Сатурн сохранили процентное соотношение газообразных водорода и гелия, аналогичное первоначальной туманности. Ядра планет-гигантов находились в области высокой плотности солнечной туманности. В результате последующего гравитационного коллапса окружающего газа образовались планеты с камен
Слайд 14

И Юпитер, и Сатурн сохранили процентное соотношение газообразных водорода и гелия, аналогичное первоначальной туманности. Ядра планет-гигантов находились в области высокой плотности солнечной туманности. В результате последующего гравитационного коллапса окружающего газа образовались планеты с каменистыми ядрами, окруженные оболочками из водорода и гелия.

Юпитер и Сатурн приобрели очень крупные размеры, так как могли притягивать газ в больших количествах. Уран и Нептун, находящиеся в менее плотных частях туманности, развивались медленнее, набирая газ в значительно меньших количествах.
Слайд 15

Юпитер и Сатурн приобрели очень крупные размеры, так как могли притягивать газ в больших количествах. Уран и Нептун, находящиеся в менее плотных частях туманности, развивались медленнее, набирая газ в значительно меньших количествах.

Печать времени. Каменистые планеты и естественные спутники с течением времени подверглись многообразным изменениям. В чем они выражались? В основном в том, что на их поверхности оставались своеобразные «шрамы», печать времени. Удары и падение метеоритов вызвали появление кратеров, это было характерн
Слайд 16

Печать времени

Каменистые планеты и естественные спутники с течением времени подверглись многообразным изменениям. В чем они выражались? В основном в том, что на их поверхности оставались своеобразные «шрамы», печать времени. Удары и падение метеоритов вызвали появление кратеров, это было характерно для первых этапов эволюции Солнечной системы.

Вещество метеорного тела испарялось, и каменные фрагменты разбрасывались на небольшие расстояния от кратера. Изучение лунной поверхности (следов эрозии там мало) позволило сделать вывод, что процесс образования кратеров проходил по-разному и зависел от временного периода.
Слайд 17

Вещество метеорного тела испарялось, и каменные фрагменты разбрасывались на небольшие расстояния от кратера. Изучение лунной поверхности (следов эрозии там мало) позволило сделать вывод, что процесс образования кратеров проходил по-разному и зависел от временного периода.

Судя по всему, Земля на первых этапах своего существования испытала сильнейшие метеоритные удары, но последствия этого были стерты такими процессами, как эрозия, вулканическая активность, и явлениями, связанными с тектоническими плитами. На Меркурии. Марсе и естественных спутниках газообразных плане
Слайд 18

Судя по всему, Земля на первых этапах своего существования испытала сильнейшие метеоритные удары, но последствия этого были стерты такими процессами, как эрозия, вулканическая активность, и явлениями, связанными с тектоническими плитами. На Меркурии. Марсе и естественных спутниках газообразных планет имеются более явные признаки процесса образования кратеров.

Атмосфера. Первоначальные атмосферные слои значительно отличались от современных. Основная часть газов образовывалась в результате извержения вулканов. В атмосферу Земли входили водяной пар, водород, окись углерода, углекислый ангидрид и азот. Земная атмосфера очень изменилась в процессе эволюции. О
Слайд 19

Атмосфера

Первоначальные атмосферные слои значительно отличались от современных. Основная часть газов образовывалась в результате извержения вулканов. В атмосферу Земли входили водяной пар, водород, окись углерода, углекислый ангидрид и азот. Земная атмосфера очень изменилась в процессе эволюции. Она обогатилась кислородом и приобрела современный состав в результате фотосинтеза и взаимодействия с живыми организмами.

Заключение. При составлении презентации я узнала что гипотез об образовании солнечной системы существует много, но я попыталась рассказать о двух которые чаще всего встречаются.
Слайд 20

Заключение

При составлении презентации я узнала что гипотез об образовании солнечной системы существует много, но я попыталась рассказать о двух которые чаще всего встречаются.

Спасибо за внимание!
Слайд 21

Спасибо за внимание!

Список похожих презентаций

Планеты солнечной системы

Планеты солнечной системы

Цель:. 1. Повторить - строение Солнечной системы; - чем звезды отличаются от планет; 2. Расширить знания о планете Земля. 3. Узнать, отчего зависит ...
Характеристики планет солнечной системы

Характеристики планет солнечной системы

Меркурий Радиус= 2439.7 ± 1.0 км S=от 82 до 217 млн км. S=58 млн. км. Плотность: 5.42 г/см3. Скорость: 47,9 км/с. Т(сидер.п)= 87,97 суток. S(синодич.п)=0.317лет. ...
Движение планет солнечной системы

Движение планет солнечной системы

Движение планет Солнечной системы. Говоря о движении планет в Солнечной системе, хочется сказать, что практически все планеты, кометы и астероиды, ...
Гипотезы происхождения солнечной системы

Гипотезы происхождения солнечной системы

Что такое солнечная система? Солнце и все тела, обращающиеся вокруг него образуют СОЛНЕЧНУЮ СИСТЕМУ. Из чего состоит солнечная система? В состав солнечной ...
Планеты солнечной системы

Планеты солнечной системы

Структура солнечной системы. Галактика Млечный путь. Образование СС. Образование планетной системы. В сравнении. Солнце и его планеты. 12 апреля 1961 ...
Альбом солнечной системы

Альбом солнечной системы

Мы живем на планете, которая называется Землей. Она находится в бескрайнем космическом пространстве. В нем множество других планет, миллиарды звезд, ...
Знакомство с малыми телами солнечной системы

Знакомство с малыми телами солнечной системы

Боде. Гершель. Пояс астероидов. Гаспра имеет неправильную форму. На фотографии «Галилео» видны кратеры вплоть до 160 м в поперечнике. Местоположение ...
Знакомство с планетами солнечной системы

Знакомство с планетами солнечной системы

Содержание:. Солнечная система Планеты Как появились планеты Планеты Солнечной системы: Вывод. Меркурий Венера Земля Марс Юпитер Сатурн Уран Нептун. ...
Земля как планета солнечной системы

Земля как планета солнечной системы

Что изучает наука астрономия. Астрономия - древнейшая из наук и самая молодая. Волнующие открытия достигаются сегодня с помощью самых сложных приемов ...
Планеты солнечной системы

Планеты солнечной системы

МЕРКУРИЙ. Ближайшая к Солнцу планета, по размерам похожая на Луну (радиус 2439 км), а по средней плотности (5.42 г/см3) на Землю. Ускорение свободного ...
Тела солнечной системы

Тела солнечной системы

ЗЕМЛЯ И ЛУНА. ВСПЫШКИ НА СОЛНЦЕ И ПРОТУБЕРАНЕЦ. МЕРКУРИЙ. ВЕНЕРА. МАРС – КРАСНАЯ ЗВЕЗДА. АСТЕРОИДЫ – КАМЕННЫЕ ПУЛИ. ЮПИТЕР – ПЛАНЕТА - ГИГАНТ. САТУРН. ...
Интерактивная игра "7 чудес Солнечной системы"

Интерактивная игра "7 чудес Солнечной системы"

ПРАВДА ИЛИ ВЫМЫСЕЛ № 7. На поверхности ЭНЦЕЛАДА (спутник Сатурна) обнаружены гигантские трещины. Из них в открытый космос со скоростью 2250 км/ч вырываются ...
Исследование солнечной системы

Исследование солнечной системы

Звёздное небо - Великая книга Природы. «Ищу я в этом мире сочетанья Прекрасного и вечного. Вдали Я вижу ночь: пески среди молчанья И звёздный свет ...
Изучение динамики солнечной системы на основе наблюдений

Изучение динамики солнечной системы на основе наблюдений

. План доклада. Состав и размеры Солнечной системы. Силы взаимодействия в Солнечной системе. Основные задачи динамики Солнечной системы. Методы наблюдений ...
Планеты солнечной системы

Планеты солнечной системы

Венера Земля Сатурн Юпитер Уран Плутон луна Марс Нептун Меркурий. Все планеты движутся вокруг Солнца по огромным кругам – орбитам. Меркурий немного ...
Планеты солнечной системы

Планеты солнечной системы

Вопросы к кроссворду:. Небесное тело, видимое простым глазом, в форме светящейся точки на небе. Специалист по астрономии. Наука о небесных телах. ...
Планеты солнечной системы. форма. размеры и движение земли

Планеты солнечной системы. форма. размеры и движение земли

Тест по §1-2. ВОПРОСЫ: Какой греческий мореплаватель совершил путешествие вокруг Европы в 320г. до н.э.? Что означает слово «география» на греческом ...
Строение солнечной системы

Строение солнечной системы

Тема урока: Строение солнечной системы. Вся Солнечная система – часть другой большой системы, которая называется галактикой. Так выглядит наша галактика ...
Мир глазами астронома: планеты солнечной системы

Мир глазами астронома: планеты солнечной системы

Меркурий. Ближайшей к солнцу планетой является Меркурий. Это самая быстрая планета. Она обращается вокруг Солнца за 88 дней. На Меркурии нет атмосферы ...
Малые тела солнечной системы

Малые тела солнечной системы

Астероиды. Астероиды — малые планеты, невидимые невооруженным глазом. Полагают, что общее число астероидов, движущихся в кольце между Марсом и Юпитером, ...

Конспекты

Определение расстояний до тел Солнечной системы и их размеров

Определение расстояний до тел Солнечной системы и их размеров

Интегрированный урок (. физика + математика. ) в 12 классе. II. вида. Тема: «Определение расстояний до тел Солнечной системы и их размеров. ». ...
Первый закон Ньютона. Инерциальные системы отсчёта

Первый закон Ньютона. Инерциальные системы отсчёта

План урока №_______. Тема :. Первый закон Ньютона. Инерциальные системы отсчёта. Цели урока:. Сформировать понятие об инерциальной системе ...
Образование электромагнитных волн. Теория Максвелла

Образование электромагнитных волн. Теория Максвелла

Разработка уроков. Образование электромагнитных волн. Теория Максвелла. Тема. . Образование электромагнитных волн. Теория Максвелла. Тип:. сообщение ...
Инерциальные системы отсчёта. Первый закон Ньютона

Инерциальные системы отсчёта. Первый закон Ньютона

Урок "Инерциальные системы отсчёта. Первый закон Ньютона". Задачи:. Образовательные:. Сформулировать понятие об инерциальной системе отсчёта, ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.