- История развития тригонометрии

Презентация "История развития тригонометрии" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24

Презентацию на тему "История развития тригонометрии" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 24 слайд(ов).

Слайды презентации

История развития тригонометрии
Слайд 1

История развития тригонометрии

Слово тригонометрия впервые встречается в 1505 году в заглавии книги немецкого математика Питискуса. Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников. В данном случае измерение треугольников следует понимать как решение треугольников, т.е. определение сторон,
Слайд 2

Слово тригонометрия впервые встречается в 1505 году в заглавии книги немецкого математика Питискуса. Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников. В данном случае измерение треугольников следует понимать как решение треугольников, т.е. определение сторон, углов и других элементов треугольника, если даны некоторые из них. Большое количество практических задач, а также задач планиметрии, стереометрии, астрономии и других приводятся к задаче решения треугольников. Возникновение тригонометрии связано с землемерием, астрономией и строительным делом.

Вступление

История становления тригонометрии. Хотя название науки возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны ещё две тысячи лет назад. Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены
Слайд 3

История становления тригонометрии

Хотя название науки возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны ещё две тысячи лет назад. Впервые способы решения треугольников, основанные на зависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н. э.) и Клавдием Птолемеем (2 в. н. э.). Позднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

Значительный вклад в развитие тригонометрии внесли арабские ученые Аль-Батани (850-929) и Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10’ с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и аз
Слайд 4

Значительный вклад в развитие тригонометрии внесли арабские ученые Аль-Батани (850-929) и Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10’ с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.

Долгое время тригонометрия носила чисто геометрический характер, т. е. факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Такою она была еще в средние века, хотя иногда в ней использовались и анал
Слайд 5

Долгое время тригонометрия носила чисто геометрический характер, т. е. факты, которые мы сейчас формулируем в терминах тригонометрических функций, формулировались и доказывались с помощью геометрических понятий и утверждений. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались, и приобрели важное значение для всей математики.

Аналитическая теория тригонометрических функций в основном была создана выдающимся математиком XVIII веке Леонардом Эйлером (1707-1783) членом Петербургской Академии наук. Громадное научное наследие Эйлера включает блестящие результаты, относящиеся к математическому анализу, геометрии, теории чисел,
Слайд 6

Аналитическая теория тригонометрических функций в основном была создана выдающимся математиком XVIII веке Леонардом Эйлером (1707-1783) членом Петербургской Академии наук. Громадное научное наследие Эйлера включает блестящие результаты, относящиеся к математическому анализу, геометрии, теории чисел, механике и другим приложениям математики. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения.

После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее проще, Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о три
Слайд 7

После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее проще, Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о тригонометрических функциях. Позднее часть тригонометрии, которая изучает свойства тригонометрических функций и зависимости между ними, начали называть гониометрией .Термин гониометрия в последнее время практически не употребляется.

Графики тригонометрических функций. 1 — синуса; 2 — косинуса; 3 — тангенса; 4 — котангенса; 5 — секанса; 6 — косеканса.
Слайд 8

Графики тригонометрических функций

1 — синуса; 2 — косинуса; 3 — тангенса; 4 — котангенса; 5 — секанса; 6 — косеканса.

Синус sin. Длительную историю имеет понятие синус. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в III веке до н.э. в работах великих математиков Древней Греции – Евклида, Архимеда, Апполония Пергского. В римский перио
Слайд 9

Синус sin

Длительную историю имеет понятие синус. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в III веке до н.э. в работах великих математиков Древней Греции – Евклида, Архимеда, Апполония Пергского. В римский период эти отношения достаточно систематично исследовались Менелаем (I век н.э.), хотя и не приобрели специального названия. Современный синус, например, изучался как полухорда, на которую опирается центральный угол, или как хорда удвоенной дуги. В IV-V веках появился уже специальный термин в трудах по астрономии великого индийского учёного Ариабхаты, именем которого назван первый индийский спутник Земли. Отрезок АМ он назвал ардхаджива (ардха – половина, джива – тетива лука, которую напоминает хорда). Позднее появилось более краткое название джива. Арабскими математиками в IX веке это слово было заменено на арабское слово джайб (выпуклость). При переводе арабских математических текстов в веке оно было заменено латинским синус (sinus – изгиб, кривизна).

y = sin x, D(y) = R, E(y) = [-1;1]
Слайд 10

y = sin x, D(y) = R, E(y) = [-1;1]

Косинус cos. Слово косинус намного моложе. Косинус – это сокращение латинского выражения completely sinus, т. е. “дополнительный синус” (или иначе “синус дополнительной дуги”).
Слайд 11

Косинус cos

Слово косинус намного моложе. Косинус – это сокращение латинского выражения completely sinus, т. е. “дополнительный синус” (или иначе “синус дополнительной дуги”).

y = cos x, D (y) = R, E(y) = [-1;1]
Слайд 12

y = cos x, D (y) = R, E(y) = [-1;1]

Тангенс tg. Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европей
Слайд 13

Тангенс tg

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов. Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности).

y = tg x, D (y) = (-п/2+пk;п/2+пk), E(y) = R
Слайд 14

y = tg x, D (y) = (-п/2+пk;п/2+пk), E(y) = R

y = ctg x, D (y) = (-пk;пk), E(y) = R
Слайд 15

y = ctg x, D (y) = (-пk;пk), E(y) = R

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) – творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях
Слайд 16

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) – творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Соотношение между тригонометрическими функциями
Слайд 17

Соотношение между тригонометрическими функциями

Формулы двойного угла
Слайд 18

Формулы двойного угла

Формулы понижения степени
Слайд 19

Формулы понижения степени

Формулы суммы и разности аргументов
Слайд 20

Формулы суммы и разности аргументов

Формулы преобразования произведения в сумму
Слайд 21

Формулы преобразования произведения в сумму

Формулы преобразования суммы в произведение
Слайд 22

Формулы преобразования суммы в произведение

Формулы привидения и двойного угла
Слайд 23

Формулы привидения и двойного угла

Работа «История развития тригонометрии». Выполнена студенткой I курса, группы 11БЭ Милановой Мадиной в рамках дисциплины «Математика» под руководством преподавателя математики Васильевой Елены Дмитриевны
Слайд 24

Работа «История развития тригонометрии»

Выполнена студенткой I курса, группы 11БЭ Милановой Мадиной в рамках дисциплины «Математика» под руководством преподавателя математики Васильевой Елены Дмитриевны

Список похожих презентаций

История развития понятия функции

История развития понятия функции

История развития понятия функции. Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании ...
История тригонометрии

История тригонометрии

Содержание. Определения История Синус, косинус, тангенс Дальнейшее развитие Аналитическая теория Список литературы. Определения. Тригономе́трия-от ...
История развития геометрии

История развития геометрии

ВВЕДЕНИЕ:. Геометрия возникла очень давно, это одна из самых древних наук. Геометрия (греческое, от geо — земля и metrein — измерять) - такое название ...
История развития математики

История развития математики

Содержание Математика - это ? Возникновение арифметики и геометрии. Древний Восток Вавилон Древняя Греция Заключение. Математика - это наука, исторически ...
История развития математики

История развития математики

Палеолит. Первоначальные представления о числе и форме. Неолит. Развитие ремёсел: Гончарное Ткацкое Плотническое. Счёт австралийских племён:. Племя ...
История развития понятия функции

История развития понятия функции

Функции, как и живые существа, характеризуются своими особенностями. П. Монтель. Идея функциональной зависимости восходит к древности. Ее содержание ...
История возникновения и развития математики"

История возникновения и развития математики"

«Учиться можно только весело … Чтобы переваривать знания, надо поглощать их с аппетитом» Анатоль Франс. Цели урока:. 1.Обобщить начальные сведения ...
История тригонометрии

История тригонометрии

Издавна установилась такая практика, что при систематическом обучении математике ученику приходится встречаться с тригонометрией трижды. Соответственно ...
История возникновения и развития математики

История возникновения и развития математики

ХОД ИГРЫ. 1. Решить уравнения: а)4,7y-(2,5y+12,4)=1,9 б)3,5x-(2,3x-3,8)=4,28. «Первая тройка». Витя Верхоглядкин отыскал правильную дробь, которая ...
Математическая сказка "История одного числа"

Математическая сказка "История одного числа"

Содержание Часть1. «Слезы…слезы…слезы.. Часть2.Волшебная ночь Часть3. Чудесное превращение. Часть 1. Ой-ё-ей !-послышался горький плач. Это плакало ...
История чисел и системы счисления

История чисел и системы счисления

Содержание. Понятие «системы счисления» История чисел Виды систем счисления Непозиционные системы счисления Позиционные системы счисления Арабская ...
История цифр

История цифр

Цель: Узнать историю возникновения арабских цифр Основные задачи: Определить, как появились цифры Выяснить, как считали древние люди, которые не знали ...
История теории вероятности

История теории вероятности

Человечество всегда стремилось к некоторого рода предсказаниям. Любая наука основана на этом. Однако предвидение фактов не может быть абсолютным, ...
История счета и систем счисления

История счета и систем счисления

Все есть число! Цифры – символы для изображения чисел. Система счисления – это совокупность приемов и правил для обозначения и именования чисел. Системы ...
История алгебры

История алгебры

Приблизительно в 850 году н.э. арабский ученый математик Мухаммед бен Муса ал-Хорезм (из города Хорезма на реке Аму-Дарья) написал книгу об общих ...
Уравнения в тригонометрии

Уравнения в тригонометрии

Цели урока. Образовательные: обобщить знания по теме «Решение простейших тригонометрических уравнений», проверить практические навыки и умения учащихся ...
История возникновения интеграла

История возникновения интеграла

Архимед определил длину окружности и площадь круга, объем и поверхности шара. При этом Архимед разработал и применил методы, предвосхитившие созданное ...
История возникновения дробей

История возникновения дробей

Введение. В 5 классе на уроках математики мы познакомились с новыми числами – с дробями. Мне стало интересно узнать: Откуда произошли такие числа? ...
История возникновения десятичных дробей

История возникновения десятичных дробей

Содержание Введение………………………..………..……………………………………..3 Новая запись чисел……………………….………………………………5 Из истории десятичных и обыкновенных дробей………8 Действия ...
История возникновения Геометрии

История возникновения Геометрии

Для первобытных людей важную роль играла форма окружавших их предметов. По форме и цвету они отличали съедобные грибы от несъедобных, пригодные для ...

Конспекты

История возникновения и развития геометрии. Начальные геометрические сведения

История возникновения и развития геометрии. Начальные геометрические сведения

Урок геометрии с использованием ИКТ. . Класс:. 7. Учитель:. Петрова Марина Николаевна,. учитель математики МБОУ СОШ №76. . Орджоникидзевского ...
Решение задач по механике с использованием тригонометрии

Решение задач по механике с использованием тригонометрии

Муниципальное общеобразовательное учреждение. Средняя общеобразовательная школа № 34 города Томска. Конспект интегрированного урока ...
Основы тригонометрии

Основы тригонометрии

Учитель математики первой категории Славкина Надежда Владимировна ОСШ №39 имени М.Жумабаева города Шымкента,. . Южно-Казахстанской области. ...
Компетентностно-ориентированные задания на уроках математики, как фактор развития предметной грамотности учащихся

Компетентностно-ориентированные задания на уроках математики, как фактор развития предметной грамотности учащихся

Ульянич Елена Васильевна. КГУ «Средняя школа № 17 акимата города Рудного». Мастер – класс. Тема:. «Компетентностно-ориентированные задания на ...
История чисел. Запись чисел

История чисел. Запись чисел

. ПЛАН-КОНСПЕКТ. Тема: История чисел. Запись чисел. Родыгина Людмила Николаевна. . МОУ-сош №3 г.Красный Кут. . Учителя математики. . ...
История чисел

История чисел

Краевое государственное казённое образовательное учреждение. «Камчатская санаторная школа – интернат». Елизовского района Камчатского края. . ...
История Ульяновска в числах

История Ульяновска в числах

Технологическая карта урока. Данные об учителе:            Хренкова Нина Александровна. Предмет:  математика             Класс: 6               ...
История Нововаршавской школы в задачах на умножение дробей

История Нововаршавской школы в задачах на умножение дробей

Интегрированный урок по математике с элементами краеведения по теме "История Нововаршавской школы в задачах на умножение дробей", 6-й класс. . ...
История возникновения чисел. Магическое значение чисел в нашей жизни

История возникновения чисел. Магическое значение чисел в нашей жизни

. Научно-практическая конференция школьников. . «Шаг в науку». секция «Математика». . История возникновения чисел. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:28 сентября 2018
Категория:Математика
Содержит:24 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации