Презентация "Геометрия пирамида" – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42

Презентацию на тему "Геометрия пирамида" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 42 слайд(ов).

Слайды презентации

Удивительный многогранник – пирамида! Выполнила: Атоян Екатерина Ученица 9а класса
Слайд 1

Удивительный многогранник – пирамида!

Выполнила: Атоян Екатерина Ученица 9а класса

Цель. Обобщить, расширить и углубить сведения о пирамиде.
Слайд 2

Цель

Обобщить, расширить и углубить сведения о пирамиде.

Задачи: Изучить дополнительные источники и собрать исторический и занимательный материал о пирамиде. Рассмотреть теоретический материал по пирамиде, выходящий за рамки школьной программы. Научиться применять теоремы при решении задач на пирамиду. Изготовить развертки и модели разных пирамид.
Слайд 3

Задачи:

Изучить дополнительные источники и собрать исторический и занимательный материал о пирамиде. Рассмотреть теоретический материал по пирамиде, выходящий за рамки школьной программы. Научиться применять теоремы при решении задач на пирамиду. Изготовить развертки и модели разных пирамид.

Исторические сведения. Пирамида «пирамис». «пирамус» (ребра правильной пирамиды). «пир» (огонь) «пирамидос» «пирос» (рожь)
Слайд 4

Исторические сведения

Пирамида «пирамис»

«пирамус» (ребра правильной пирамиды)

«пир» (огонь) «пирамидос» «пирос» (рожь)

Пирамиды Фараона Хеопса XXVII в до н.э. Крупнейшая из египетских пирамид, единственная из «Семи чудес света», сохранившееся до наших дней.
Слайд 5

Пирамиды Фараона Хеопса XXVII в до н.э.

Крупнейшая из египетских пирамид, единственная из «Семи чудес света», сохранившееся до наших дней.

Церковь преображения в Кижах
Слайд 6

Церковь преображения в Кижах

Церковь в Каменском
Слайд 7

Церковь в Каменском

Пирамида в природе. Кристаллы льда и горного хрусталя (кварца)
Слайд 8

Пирамида в природе

Кристаллы льда и горного хрусталя (кварца)

Картина М.Эшера, посвященная многогранникам
Слайд 9

Картина М.Эшера, посвященная многогранникам

Принцип Кавальери. Принцип: если при пересечении двух тел плоскостями параллельными одной и той же плоскости, в сечении всегда получаются равновеликие между собой фигуры, то объемы этих тел равны.
Слайд 10

Принцип Кавальери

Принцип: если при пересечении двух тел плоскостями параллельными одной и той же плоскости, в сечении всегда получаются равновеликие между собой фигуры, то объемы этих тел равны.

Произвольная пирамида. Пирамида – это многогранник, составленный из n-угольника A1,A2…An и n треугольников.
Слайд 11

Произвольная пирамида

Пирамида – это многогранник, составленный из n-угольника A1,A2…An и n треугольников.

Заполним следующую таблицу. В-Р+Г=2
Слайд 12

Заполним следующую таблицу

В-Р+Г=2

Леонард Эйлер. 1752 год – теорема Эйлера
Слайд 13

Леонард Эйлер

1752 год – теорема Эйлера

Сечение пирамиды. Сечением пирамиды называется многоугольник, который образуется при пересечении пирамиды с секущей плоскостью.
Слайд 14

Сечение пирамиды

Сечением пирамиды называется многоугольник, который образуется при пересечении пирамиды с секущей плоскостью.

Утверждение. Если пирамида пересечена плоскостью, параллельной основанию, то: Сечение – многоугольник, подобный основанию; Площадь сечения и основания относятся как квадраты их расстояний от вершины.
Слайд 15

Утверждение

Если пирамида пересечена плоскостью, параллельной основанию, то: Сечение – многоугольник, подобный основанию; Площадь сечения и основания относятся как квадраты их расстояний от вершины.

Дано: PA1A2A3 – пирамида, || A1A2A3. B1B2B3-сечение S - площадь основания. PH- высота, H1 PH Доказать: A1A2A3. -коэффициент подобия. S B1B2B3 Доказательство: SB1B2B3=. Утверждение для треугольной пирамиды
Слайд 16

Дано: PA1A2A3 – пирамида, || A1A2A3

B1B2B3-сечение S - площадь основания

PH- высота, H1 PH Доказать: A1A2A3

-коэффициент подобия

S B1B2B3 Доказательство: SB1B2B3=

Утверждение для треугольной пирамиды

Разобьем пирамиду на треугольные пирамиды с общей высотой PH. Поэтому площадь сечения равна. SB1B2B3+…+SB1Bn-1Bn= (SA1A2A3+…+SA1An-1An) =. Утверждение для произвольной пирамиды
Слайд 17

Разобьем пирамиду на треугольные пирамиды с общей высотой PH. Поэтому площадь сечения равна.

SB1B2B3+…+SB1Bn-1Bn= (SA1A2A3+…+SA1An-1An) =

Утверждение для произвольной пирамиды

Правильная пирамида. Пирамида называется правильной, если в основании – правильный многоугольник, а отрезок соединяющий вершину с центром основания является высотой.
Слайд 18

Правильная пирамида

Пирамида называется правильной, если в основании – правильный многоугольник, а отрезок соединяющий вершину с центром основания является высотой.

Свойства правильной пирамиды. У правильной пирамиды: боковые ребра равны; боковые грани являются равными равнобедренными треугольниками; апофемы равны; площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.
Слайд 19

Свойства правильной пирамиды

У правильной пирамиды: боковые ребра равны; боковые грани являются равными равнобедренными треугольниками; апофемы равны; площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Дано: PA1A2…An – правильная пирамида а – сторона основания; h – апофема Доказать: 1. PA1=PA2=…=PАn 2.PA1A2=PA2A3=…=PAnA1 – равнобедренные треугольники 3.PE1=PE2=…=PEn 4. Sбок. =Pосн.h
Слайд 20

Дано: PA1A2…An – правильная пирамида а – сторона основания; h – апофема Доказать: 1. PA1=PA2=…=PАn 2.PA1A2=PA2A3=…=PAnA1 – равнобедренные треугольники 3.PE1=PE2=…=PEn 4. Sбок. =Pосн.h

Правильный тетраэдр. Тетраэдр, гранями которого являются правильные треугольники, называется правильным.
Слайд 21

Правильный тетраэдр

Тетраэдр, гранями которого являются правильные треугольники, называется правильным.

Усеченный тетраэдр. Если срезать углы тетраэдра плоскостями, каждая из которых отсекает третью часть его рёбер, выходящих из одной вершины, то получим усеченный тетраэдр, имеющий восемь граней.
Слайд 22

Усеченный тетраэдр

Если срезать углы тетраэдра плоскостями, каждая из которых отсекает третью часть его рёбер, выходящих из одной вершины, то получим усеченный тетраэдр, имеющий восемь граней.

Объем пирамиды. Теорема: Объем правильной четырехугольной пирамиды равен одной трети произведения площади основания на высоту. Дано: правильная четырехугольная пирамида, h – высота, S – площадь основания Доказать: V=. S h
Слайд 23

Объем пирамиды

Теорема: Объем правильной четырехугольной пирамиды равен одной трети произведения площади основания на высоту.

Дано: правильная четырехугольная пирамида, h – высота, S – площадь основания Доказать: V=

S h

Теорема: Объем пирамиды равен одной третьи произведения площади основания на высоту. Дано: пирамида, S– площадь, h – высота. Доказать: V=
Слайд 24

Теорема: Объем пирамиды равен одной третьи произведения площади основания на высоту

Дано: пирамида, S– площадь, h – высота. Доказать: V=

Моделирование пирамид. Если поверхность пирамиды разрезать по некоторым ребрам и развернуть её на плоскости так, чтобы все многоугольники, входящие в эту поверхность, лежали в данной плоскости, то полученная фигура на плоскости называется разверткой пирамиды.
Слайд 25

Моделирование пирамид

Если поверхность пирамиды разрезать по некоторым ребрам и развернуть её на плоскости так, чтобы все многоугольники, входящие в эту поверхность, лежали в данной плоскости, то полученная фигура на плоскости называется разверткой пирамиды.

Геометрия пирамида Слайд: 26
Слайд 26
Задача на развертку. Можно ли квадрат «свернуть» в пирамиду, не разрезая его? Если можно, то найдите объем пирамиды при условии, что сторона квадрата равна а.
Слайд 27

Задача на развертку

Можно ли квадрат «свернуть» в пирамиду, не разрезая его? Если можно, то найдите объем пирамиды при условии, что сторона квадрата равна а.

Решение: Объем пирамиды проще вычислить, если за основание принять равнобедренный прямоугольный треугольник с катетами а/2. Высотой пирамиды будет боковое ребро, равное а. Объем составит а /24 куб.ед.
Слайд 28

Решение: Объем пирамиды проще вычислить, если за основание принять равнобедренный прямоугольный треугольник с катетами а/2. Высотой пирамиды будет боковое ребро, равное а. Объем составит а /24 куб.ед.

Задача: Найти площадь развертки правильного тетраэдра с ребром 10 см. Решение:
Слайд 29

Задача: Найти площадь развертки правильного тетраэдра с ребром 10 см. Решение:

Задача: Найти площадь развертки усеченного тетраэдра с ребром 3,5 см Решение:
Слайд 30

Задача: Найти площадь развертки усеченного тетраэдра с ребром 3,5 см Решение:

Задачи. Основанием пирамиды является ромб, сторона которого равна 5 см, а одна из диагоналей равна 8 см. Найдите боковые ребра пирамиды, если её высота проходит через точку пересечения диагоналей основания и равна 7 см.
Слайд 31

Задачи

Основанием пирамиды является ромб, сторона которого равна 5 см, а одна из диагоналей равна 8 см. Найдите боковые ребра пирамиды, если её высота проходит через точку пересечения диагоналей основания и равна 7 см.

Дано: SH=7, AB=5, DB=8. Найти: боковые ребра. Решение: По теореме Пифагора: AH= см; SA=SC= см; SB=SD= см.
Слайд 32

Дано: SH=7, AB=5, DB=8. Найти: боковые ребра. Решение: По теореме Пифагора: AH= см; SA=SC= см; SB=SD= см.

Найдите объем пирамиды с высотой h, если h = 2 м, а основанием является квадрат со стороной 3 м Решение: Так как V= S осн. h, а в основании лежит квадрат, то V= 3 2= 6 м
Слайд 33

Найдите объем пирамиды с высотой h, если h = 2 м, а основанием является квадрат со стороной 3 м Решение: Так как V= S осн. h, а в основании лежит квадрат, то V= 3 2= 6 м

Ребусы
Слайд 34

Ребусы

Вершина
Слайд 35

Вершина

Апофема
Слайд 36

Апофема

Стих. О пирамидах В Древнем Египте жил египтянин, Был фараон он, а может, крестьянин. Как-то собрал он свои неликвиды, Взял и построил из них пирамиды. Как бы то ни было, но отчего-то Очень неплохо он с них заработал. Тот египтянин теперь знаменит: Гений финансовых он пирамид.
Слайд 37

Стих

О пирамидах В Древнем Египте жил египтянин, Был фараон он, а может, крестьянин. Как-то собрал он свои неликвиды, Взял и построил из них пирамиды. Как бы то ни было, но отчего-то Очень неплохо он с них заработал. Тот египтянин теперь знаменит: Гений финансовых он пирамид.

Заключение. На изучение темы «Пирамида» в 9 классе отведен один урок. На уроке я получила начальные сведения о пирамиде. В данной работе я попыталась расширить свои знания. Мною был собран исторический материал о пирамиде и её объеме и занимательный материал: загадки, ребусы, кроссворды.
Слайд 38

Заключение

На изучение темы «Пирамида» в 9 классе отведен один урок. На уроке я получила начальные сведения о пирамиде. В данной работе я попыталась расширить свои знания. Мною был собран исторический материал о пирамиде и её объеме и занимательный материал: загадки, ребусы, кроссворды.

Так же я рассматривала теоретические вопросы, выходящие за рамки школьного курса геометрии 9 класса. Я изготовила развертки и модели различных пирамид, что помогает развитию пространственного воображения. При решении задач по теме «Пирамида» я повторила и обобщила знания по планиметрии. Материал, со
Слайд 39

Так же я рассматривала теоретические вопросы, выходящие за рамки школьного курса геометрии 9 класса. Я изготовила развертки и модели различных пирамид, что помогает развитию пространственного воображения. При решении задач по теме «Пирамида» я повторила и обобщила знания по планиметрии. Материал, собранный в данной работе, поможет мне в дальнейшем изучении стереометрии в 10-11 классах.

Литература. Геометрия, 7-9:Учебник для общеобразовательного учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – 14-е изд. – М: Просвещение 2004-384с. Геометрия, 10-11: Учебник для общеобразовательного учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – 13-е изд. – М: Просвещени
Слайд 40

Литература

Геометрия, 7-9:Учебник для общеобразовательного учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – 14-е изд. – М: Просвещение 2004-384с. Геометрия, 10-11: Учебник для общеобразовательного учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – 13-е изд. – М: Просвещение 2004-206с. Зив Б.Г. Задачи к урокам геометрии 7-11 класс. – С. – Петербург, 1998 НПО «Мир и семья – 95»- 624с. Глейзер Г.И. История математики в школе: IX – X класс Пособие для учителей. – М.: Просвещение, 1983 – 351с.

Глейзер Г.И. История математики в школе: VII – VIII класс Пособие для учителей. – М.: Просвещение, 1982 – 240с. Игнатьев Е.И. В царстве смекалки / Под редакцией М.К. Потанова – 4-е изд. – М.: Наука 1984, 192с. Энциклопедический словарь юного математика, - М.: Педагогика, 1985 Смирнова И.М. В мире мн
Слайд 41

Глейзер Г.И. История математики в школе: VII – VIII класс Пособие для учителей. – М.: Просвещение, 1982 – 240с. Игнатьев Е.И. В царстве смекалки / Под редакцией М.К. Потанова – 4-е изд. – М.: Наука 1984, 192с. Энциклопедический словарь юного математика, - М.: Педагогика, 1985 Смирнова И.М. В мире многогранников – М.: Просвещение, 1995 Веннинджер М. Модели Многогранников – М.Мир, 1974 Штейнгауз Г. Математический калейдоскоп Штейнгауз Г. Сто задач. – М: Наука, 1982

Спасибо за внимание!
Слайд 42

Спасибо за внимание!

Список похожих презентаций

Геометрия «Пирамида»

Геометрия «Пирамида»

Бертран Рассел. Математика владеет не только истиной, но и высшей красотой-красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному ...
Геометрия вокруг нас. Пирамида

Геометрия вокруг нас. Пирамида

Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Первый, кто установил, чему ...
Геометрия четырехугольник

Геометрия четырехугольник

«Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». Эти слова, сказаны великим французским ...
Геометрия на службе у архитектуры

Геометрия на службе у архитектуры

Работу выполнила: Фёдорова Ирина Петровна, ученица 7 «А» класса МКОУ СОШ №4 руководитель учитель математики Терентьева Ольга Анатольевна городского ...
Геометрия повторение

Геометрия повторение

Назовите изображённые фигуры. отрезок луч прямая. Вспомните их определения. Какая фигура называется углом? Какой угол называется прямым, острым, тупым? ...
Геометрия

Геометрия

Содержание:. Координаты вектора Связь между координатами вектора и координатами его начала и конца Уравнения окружности и прямой Синус, Косинус, Тангенс ...
Геометрия Лобачевского

Геометрия Лобачевского

Сотни профессиональных геометров разных времён и народов, тысячи любителей математики в течение 20-х веков искали доказательство пятого постулата. ...
Правильная пирамида

Правильная пирамида

Цели урока:. введение понятия правильной пирамиды; рассмотрение свойств правильной пирамиды; введение понятия апофема; рассмотрение задач на нахождение ...
Фигура пирамида

Фигура пирамида

Содержание. 1 История развития геометрии пирамиды 2 Элементы пирамиды 3 Развёртка пирамиды 4Свойства пирамиды 5Теоремы, связывающие пирамиду с другими ...
Геометрия «Векторы»

Геометрия «Векторы»

Понятие вектора. Многие физические величины, характеризуются не только своим числовым значением, но и направлением в пространстве. Такие физические ...
Геометрия «Параллельность прямой и плоскости»

Геометрия «Параллельность прямой и плоскости»

Параллельные прямые. Параллельные прямые – две прямые в пространстве, которые лежат в одной плоскости и не пересекаются. Параллельность прямых обозначается ...
Геометрия

Геометрия

1. Построить A. 2. Построить окружность произвольного радиуса с центром в вершине A. . . 4. Построить две окружности равного радиуса с центрами ...
Геометрия «Аксиома параллельных прямых»

Геометрия «Аксиома параллельных прямых»

«Геометрия полна приключений, потому что за каждой задачей скрывается приключение мысли. Решить задачу – это значит пережить приключение». (В. Произволов). ...
Геометрия

Геометрия

Учёные, внесшие вклад в развитие геометрии. Фалес Древнегреческий философ и математик, астроном и физик, путешественник и торговец, а также военный ...
Геометрия

Геометрия

178' 179' 180' 181'. Задача №1 А В С а 1 2 Дано: АВС а АС Найти: L 1+L 2 +L 3 4 5 Ответ: L1+L2+L3= 180'. "Теорема о сумме углов треугольника.". 1 ...
Геометрия

Геометрия

Həndəsİ fiqurlarIn qruplaşdIrIlmasI. TƏDQIQAT SUALI. BÜTÜN HƏNDƏSI FIQURLAR EYNI OLSA YDI NƏ OLARDI? . 1. Şəklə bax! Kvadratları göy, üçbucağı sarı, ...
ГИА 2013. Модуль Геометрия №13

ГИА 2013. Модуль Геометрия №13

Повторение(3) Ответ: 23. Укажите номера верных утверждений. 1.Через любые три различные точки плоскости можно провести единственную прямую. 2.Если ...
Геометрия «Параллельный перенос»

Геометрия «Параллельный перенос»

Упражнение 1. Докажите, что параллельный перенос является движением. Доказательство. Пусть параллельный перенос на вектор переводит точки A и B соответственно ...
Пирамида. Усечённая пирамида

Пирамида. Усечённая пирамида

Архитектура и геометрия. . . . . . Многоугольник РА1А2А3….Ап основание пирамиды. Треугольники А1РА2, А2РА3 … боковые грани. Р –вершина пирамиды. РН ...
Геометрия и лист бумаги

Геометрия и лист бумаги

Если бумага…. Рвется Режется Сгибается Горит Стоит,. то может ли это свойство применяться в геометрии? Результаты опроса. Какие действия с бумагой ...

Конспекты

Геометрия треугольника

Геометрия треугольника

Тема урока:. . «Геометрия треугольника». Тип урока: обобщающий урок по курсу геометрии. . Форма проведения урока: урок - бенефис». Цель урока:. ...
Геометрия окружности

Геометрия окружности

Урок математики в 9 классе. учителя МОУ «СОШ № 20» г. Энгельса. Милюткиной Людмилы Николаевны. и учителя математики МОУ «СОШ № 21» г. Энгельса. ...
Геометрия вокруг нас…

Геометрия вокруг нас…

Муниципальное бюджетное общеобразовательное учреждение. средняя общеобразовательная школа № 18. Кировский район городской округ город Уфа. . ...
Геометрия вокруг нас

Геометрия вокруг нас

Разработала: Ильенко Анжела Владиславовна. Учитель начальных классов МБОУ СОШ №2 г. Стрежевого Томской области. Занятие для учеников 4х кл. по теме ...
Геометрия в природе

Геометрия в природе

Класс. : 8. Тема. «Геометрия в природе. ». Тип урока. : урок творческого развития. Цели:. Общеобразовательные:. 1. Систематизировать знаний ...
Геометрия в ГИА

Геометрия в ГИА

Сигайло Елена Валерьевна, учитель математики. МБОУ. . «Средняя общеобразовательная школа пос. Октябрьский». . пос. Октябрьский Лысогорского района ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:20 сентября 2018
Категория:Математика
Содержит:42 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации