Презентация "Решето Эратосфена" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15

Презентацию на тему "Решето Эратосфена" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 15 слайд(ов).

Слайды презентации

Стеценко Олеся 6 «А». Решето Эратосфена
Слайд 1

Стеценко Олеся 6 «А»

Решето Эратосфена

Одной из самых больших загадок математики является расположение простых чисел в ряду всех натуральных чисел. Иногда два простых числа идут через одно, (например, 17 и 19, 29 и 31), а иногда подряд идет миллион составных чисел. Сейчас ученые знают уже довольно много о том, сколько простых чисел содер
Слайд 2

Одной из самых больших загадок математики является расположение простых чисел в ряду всех натуральных чисел. Иногда два простых числа идут через одно, (например, 17 и 19, 29 и 31), а иногда подряд идет миллион составных чисел. Сейчас ученые знают уже довольно много о том, сколько простых чисел содержится среди N первых натуральных чисел. В этих подсчетах весьма полезным оказался метод, восходящий еще к древнегреческому ученому Эратосфену Киренскому. Он жил в третьем веке до новой эры в Александрии.

(Eratosthenes, 276-194 г. до н. э.), греческий ученый, который первым вычислил окружность Земли, пользуясь методами геометрии. Он был чрезвычайно любознательным человеком. Прославился своими работами по математике, географии, философии и литературе. Заведовал Александрийской библиотекой в Египте (од
Слайд 3

(Eratosthenes, 276-194 г. до н. э.), греческий ученый, который первым вычислил окружность Земли, пользуясь методами геометрии. Он был чрезвычайно любознательным человеком. Прославился своими работами по математике, географии, философии и литературе. Заведовал Александрийской библиотекой в Египте (одной из первых библиотек в мире).

ЭРАТОСФЕН

Книги в то время представляли собой не книги в нашем понимании этого слова, а папирусные свитки. В знаменитой библиотеке хранилось более 700 000 свитков, которые содержали все сведения о мире, известные людям той эпохи. При содействии своих помощников Эратосфен первым рассортировал свитки по темам.
Слайд 4

Книги в то время представляли собой не книги в нашем понимании этого слова, а папирусные свитки. В знаменитой библиотеке хранилось более 700 000 свитков, которые содержали все сведения о мире, известные людям той эпохи. При содействии своих помощников Эратосфен первым рассортировал свитки по темам. Он дожил до глубокой старости. Когда он ослеп от старости, то перестал есть и умер от голода. Он не представлял себе жизни без возможности работать со своими любимыми книгами.

В математике Эратосфена интересовал вопрос о том, как найти все простые числа среди натуральных чисел от 1 до . (Эратосфен считал 1 простым числом. Сейчас математики считают 1 числом особого вида, которое не относится ни к простым, ни к составным числам.) Эратосфен изобрел системный метод определени
Слайд 5

В математике Эратосфена интересовал вопрос о том, как найти все простые числа среди натуральных чисел от 1 до . (Эратосфен считал 1 простым числом. Сейчас математики считают 1 числом особого вида, которое не относится ни к простым, ни к составным числам.) Эратосфен изобрел системный метод определения простых чисел путем отбора и отбрасывания чисел, имеющих делители, - все оставшиеся числа являются простыми. Этот метод впоследствии получил название решето Эратосфена и используется до сих пор, однако при работе с большими числами он неудобен, поскольку требуется слишком много времени, чтобы проверить наличие у них делителей.

Почему «Решето»? * * * Так как во времена Эратосфена писали на восковых табличках и не вычеркивали, а "выкалывали" цифры, то табличка после описанного процесса напоминала решето. Поэтому метод Эратосфена для нахождения простых чисел получил название "решето Эратосфена".
Слайд 6

Почему «Решето»?

* * * Так как во времена Эратосфена писали на восковых табличках и не вычеркивали, а "выкалывали" цифры, то табличка после описанного процесса напоминала решето. Поэтому метод Эратосфена для нахождения простых чисел получил название "решето Эратосфена".

Какими бывают числа? Просто́е число́ — это натуральное число, которое имеет ровно два натуральных делителя (только 1 и самого себя). Все остальные числа, кроме единицы, называются составными. Таким образом, все натуральные числа большие единицы разбиваются на простые и составные. Простое число
Слайд 7

Какими бывают числа?

Просто́е число́ — это натуральное число, которое имеет ровно два натуральных делителя (только 1 и самого себя). Все остальные числа, кроме единицы, называются составными. Таким образом, все натуральные числа большие единицы разбиваются на простые и составные.

Простое число

Натуральное число. Натура́льные чи́сла (естественные числа) — числа, возникающие естественным образом при счёте . Существуют два подхода к определению натуральных чисел — числа, используемые при: перечислении (нумеровании) предметов (первый, второй, третий…) — подход, общепринятый в большинстве стра
Слайд 8

Натуральное число

Натура́льные чи́сла (естественные числа) — числа, возникающие естественным образом при счёте . Существуют два подхода к определению натуральных чисел — числа, используемые при: перечислении (нумеровании) предметов (первый, второй, третий…) — подход, общепринятый в большинстве стран мира (в том числе и в России); обозначении количества предметов (нет предметов, один предмет, два предмета…). Отрицательные и нецелые числа натуральными числами не являются. *** Множество всех натуральных чисел принято обозначать знаком N. Множество натуральных чисел является бесконечным, так как для любого натурального числа найдётся большее его натуральное число.

Составное число. Составное число́ — натуральное число большее 1, не являющееся простым. Каждое составное число является произведением двух натуральных чисел, больших 1. *** Последовательность составных чисел начинается так: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, …
Слайд 9

Составное число

Составное число́ — натуральное число большее 1, не являющееся простым. Каждое составное число является произведением двух натуральных чисел, больших 1. *** Последовательность составных чисел начинается так: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, …

Как работать с Решетом Эратосфена? Итак, это алгоритм нахождения всех простых чисел не больше заданного числа N (пусть N=100) Следуя методу Эратосфена, нужно выполнить следующие шаги: Выписать подряд все натуральные числа от 2 до N (число 2 в списке-простое)
Слайд 10

Как работать с Решетом Эратосфена?

Итак, это алгоритм нахождения всех простых чисел не больше заданного числа N (пусть N=100) Следуя методу Эратосфена, нужно выполнить следующие шаги: Выписать подряд все натуральные числа от 2 до N (число 2 в списке-простое)

Пройдём по ряду чисел, вычёркивая все числа кратные 2(каждое второе)
Слайд 11

Пройдём по ряду чисел, вычёркивая все числа кратные 2(каждое второе)

Следующее невычеркнутое число 3 –простое. Пройдём по ряду чисел, вычёркивая все числа, кратные 3(каждое третье)
Слайд 12

Следующее невычеркнутое число 3 –простое. Пройдём по ряду чисел, вычёркивая все числа, кратные 3(каждое третье)

3. Следующее невычеркнутое число 5- простое. Пройдём по ряду чисел, вычёркивая все числа кратные 5 (каждое пятое) и т.д.
Слайд 13

3. Следующее невычеркнутое число 5- простое. Пройдём по ряду чисел, вычёркивая все числа кратные 5 (каждое пятое) и т.д.

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59, 61,67,71,73,79,83,89,97. В результате все составные числа будут просеяны, а невычеркнутыми останутся все простые числа.
Слайд 14

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59, 61,67,71,73,79,83,89,97.

В результате все составные числа будут просеяны, а невычеркнутыми останутся все простые числа.

Конец.
Слайд 15

Конец.

Список похожих презентаций

Решето Эратосфена

Решето Эратосфена

Сын Эглаоса, уроженец Кирены Начальное образование Эратосфен получил в Александрии под руководством своего учёного земляка Каллимаха. Другим учителем ...
Решето Эратосфена

Решето Эратосфена

Тема:. «Решето Эратосфена». Идея возникновения проекта:. Ещё на уроке я поняла что такое простые и составные числа, но меня заинтересовали вопросы ...
Решето Эратосфена

Решето Эратосфена

Решето Эратосфена - это. алгоритм нахождения простых чисел до некоторого числа n. Простым называется число, которое можно разделить без остатка только ...
Занимательная математика

Занимательная математика

РАЗМИНКА Миша тратит на дорогу в школу 5 минут. Сколько минут он потратит на эту дорогу вдвоём с мамой? Какие сто букв могут остановить движение транспорта? ...
Занимательная математика

Занимательная математика

Проблема проекта:. многим ученикам не интересно заниматься математикой. Они считают её сухой и незанимательной наукой, поэтому у них плохие отметки ...
Занимательная математика

Занимательная математика

Интеллектуальная игра. Играем. Во сколько раз должны некие объекты превосходить остальные, чтобы по праву называться гигантскими? В миллиард раз (гига). ...
Космос и математика

Космос и математика

. Открытие космической эры. Открытие космической эры и начало освоения космического пространства - самое выдающееся достижение человечества XX в. ...
Зачем нужна математика

Зачем нужна математика

Не хочу я математику учить. Складывать умею, умножать, делить. Сдачу в магазине сосчитаю, Хватит знаний этих, точно знаю. Мне задачи больше не нужны. ...
Занимательная математика в младших классах

Занимательная математика в младших классах

Круглый, румяный. В печке печён, На окошке стужён. Кто я? Колобок. Проверка 5, 8, 4, 6, 7, 0, 1, 2 Молодцы! Задача. Семь снегирей на ветке сидели. ...
«Устный счёт» математика

«Устный счёт» математика

1- 0,4 3 +2,4 3,2 – 2 3,2- 0,2 12,3 + 3,4 2,04 + 3,6 12 – 1,5 6,2- 2,6 ( 12,4 + 3,67)- 2,67 ( 45,06 + 23,5) – 40 ,06. 0,6 5,4 1,2 3 15,7 5,64 10,5 ...
«Углы» математика

«Углы» математика

Цель урока:. познакомить учащихся с геометрической фигурой углом, с видами углов (прямой, тупой, острый), сформировать представления о существенных ...
«Своя игра» математика

«Своя игра» математика

Математическая игра-викторина «Своя игра». Конец игры Литература. Задачи – шутки 50. Вопрос: Один господин написал о себе: «Пальцев у меня двадцать ...
«Своя игра» математика

«Своя игра» математика

Условия игры:. Участники сами выбирают темы и вопросы. Вопрос выбирает правильно ответившая команда. 210 – 250 баллов – отметка «5». 110 -200 баллов ...
«Координатная плоскость» математика

«Координатная плоскость» математика

Цели и задачи урока:. 1. Ввести понятие координатной плоскости, уметь определять координаты точек, строить точки по их координатам. 2. Развивать мышление, ...
"Электрики и математика"

"Электрики и математика"

Воспитательные Воспитание умения работать в команде, уважения к сопернику, воспитание чувства ответственности; Воспитание чувства ответственности, ...
Занимательная математика

Занимательная математика

Подводная арифметика. Детёныш голубого кита выпивает за день 600 л молока. Сколько молока выпьет такой малыш за месяц (30 дней)? Ответ: 18 000 л. ...
Занимательная математика

Занимательная математика

Профессор ложится спать в 8 часов вечера и заводит будильник на 9 часов утра. Сколько часов будет спать профессор? Профессор. Рядом с берегом со спущенной ...
Арифметические действия над числами или зачем туристу математика?

Арифметические действия над числами или зачем туристу математика?

27 сентября – день туриста. 34 х 2 = 90 : 30 = 9 + 45 = 11 х 3 = 80 – 19 = 55 : 5 = И У Р Т С 68 3 54 33 61 11. Что лежит в рюкзаке туриста? спички ...
Занимательная математика для детей (устный счёт + учимся писать цифры)

Занимательная математика для детей (устный счёт + учимся писать цифры)

По дороге мальчик и девочка шли, Оба по два рубля нашли. За ними ещё трое идут. Сколько они денег найдут? Повезло опять Егорке, У реки сидит не зря. ...
береза глазами математика

береза глазами математика

Цель. Целью данного исследования является выявление в повседневной жизни различных законов, которым нас обучают еще в школе. И как же все можно связать ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:5 сентября 2018
Категория:Математика
Содержит:15 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации