- Симметрия в окружающем мире

Презентация "Симметрия в окружающем мире" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17

Презентацию на тему "Симметрия в окружающем мире" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 17 слайд(ов).

Слайды презентации

ГКООУ ЛO «Лужская санаторная школа-интернат» Презентация на тему «Геометрия в цветах». Подготовила ученица 10 класса Ильина любовь Проверил учитель: Мехнина С.В.. 5klass.net
Слайд 1

ГКООУ ЛO «Лужская санаторная школа-интернат» Презентация на тему «Геометрия в цветах»

Подготовила ученица 10 класса Ильина любовь Проверил учитель: Мехнина С.В..

5klass.net

План. 1. Симметрия в математике 2. Симметрия в живой природе 3. Скалярная геометрия «Цветок Жизни» 4. Симметрия у цветков и растений 5. Радиальная симметрия 6. Симметрия в химии 7.Симметрия вокруг нас
Слайд 2

План

1. Симметрия в математике 2. Симметрия в живой природе 3. Скалярная геометрия «Цветок Жизни» 4. Симметрия у цветков и растений 5. Радиальная симметрия 6. Симметрия в химии 7.Симметрия вокруг нас

СИММЕТРИЯ В МАТЕМАТИКЕ. Идея симметрии часто является отправным пунктом в гипотезах и теориях учёных прошлых веков, веривших в математическую гармонию мироздания и видевших в этой гармонии проявление божественного начала. Древние греки считали, что Вселенная симметрична просто потому, что симметрия
Слайд 3

СИММЕТРИЯ В МАТЕМАТИКЕ

Идея симметрии часто является отправным пунктом в гипотезах и теориях учёных прошлых веков, веривших в математическую гармонию мироздания и видевших в этой гармонии проявление божественного начала. Древние греки считали, что Вселенная симметрична просто потому, что симметрия прекрасна. В своих размышлениях над картиной мироздания человек с давних времен активно использовал идею симметрии.

Древние греки полагали, что Вселенная симметрична просто потому, что симметрия прекрасна. Исходя из соображений симметрии, они высказали ряд догадок.
Слайд 4

Древние греки полагали, что Вселенная симметрична просто потому, что симметрия прекрасна. Исходя из соображений симметрии, они высказали ряд догадок.

Пифагор (5 век до н.э.), считает сферу наиболее симметричной и совершенной формой, делал вывод о сферичности Земли и о ее движении по сфере. При этом он полагал, что Земля движется по сфере некоего «центрального огня». Вокруг того же «огня», согласно Пифагору, должны были обращаться известные в те в
Слайд 5

Пифагор (5 век до н.э.), считает сферу наиболее симметричной и совершенной формой, делал вывод о сферичности Земли и о ее движении по сфере. При этом он полагал, что Земля движется по сфере некоего «центрального огня». Вокруг того же «огня», согласно Пифагору, должны были обращаться известные в те времена шесть планет, а также Луна, Солнце, звезды

Симметрия в живой природе. Прежде всего познакомимся с основными понятиями теории симметрии. Такие, которые совершенно одинаковы, или, точнее, которые при взаимном наложении совмещаются друг с другом во всех своих деталях, как, например, два лепестка на рисунке 1. Пары лепестков: а — совместимо равн
Слайд 6

Симметрия в живой природе

Прежде всего познакомимся с основными понятиями теории симметрии.

Такие, которые совершенно одинаковы, или, точнее, которые при взаимном наложении совмещаются друг с другом во всех своих деталях, как, например, два лепестка на рисунке 1.

Пары лепестков: а — совместимо равные; б — зеркально равные; в — и совместимо и зеркально равные. Фигуры из пяти лепестков: г — расположенных относительно друг друга хаотично; д — закономерно. Верхняя фигура асимметричная, нижняя — симметричная.

Переносы — это перемещения вдоль прямой АВ на расстояние а. Такая операция применима лишь для объектов, вытянутых в одном особенном направлении АВ. Наименьший путь а, который должен быть пройден рядом фигур, прежде чем произойдет самосовмещение, называется элементарным переносом. Операции переноса т
Слайд 7

Переносы — это перемещения вдоль прямой АВ на расстояние а. Такая операция применима лишь для объектов, вытянутых в одном особенном направлении АВ. Наименьший путь а, который должен быть пройден рядом фигур, прежде чем произойдет самосовмещение, называется элементарным переносом. Операции переноса также соответствует особый элемент симметрии — ось переносов (а):прямая АВ или любая прямая, параллельная АВ. Ось переносов (о) присуща только бесконечным фигурам, тем, которые бесконечно вытянуты лишь в одном особенном направлении (типа «стержней»), в двух особенных направлениях (типа «слоев»), в трех особенных направлениях (типа «кристаллов»). При этом считается, что телам, не вытянутым бесконечно ни в одном особенном направлении (типа изображенных на рисунках 2, 3, 4, 5), присуща нульмерная симметрия; телам, вытянутым в одном особенном направлении, — одномерная симметрия, в двух — двумерная симметрия, в трех — трехмерная симметрия. А теперь каждую из этих симметрии рассмотрим по порядок.

Аксиальная симметрия: а — медуза аурелия инсулинда; б — детская вертушка; в — молекула химического соединения. При повороте этих фигур на 360о равные части фигур совпадут друг с другом соответственно 4, 4, 6 раз.

Сакральная геометрия – Цветок Жизни. “Цветок Жизни” - единственное изображение, которое содержит в себе до единого аспекты творения, все математические формулы, каждый закон физики, каждую гармонию в музыке и каждую биологическую жизнеформу. Сакральная геометрия имеет одну особенность — она безупреч
Слайд 8

Сакральная геометрия – Цветок Жизни

“Цветок Жизни” - единственное изображение, которое содержит в себе до единого аспекты творения, все математические формулы, каждый закон физики, каждую гармонию в музыке и каждую биологическую жизнеформу. Сакральная геометрия имеет одну особенность — она безупречна, всё в мире связано с ней, она основа творения, в геометрии “Цветка Жизни” заключен образ творения. Всё, что существует в мире или было когда-либо сотворено, создавалось по этому образцу и имеет в своей основе сакральную геометрию.

“Цветок Жизни” является нечем иным, как vesica piscis. Весь узор “Цветка Жизни” формируется единственной окружностью. Одна окружность - центральная, а затем шестью окружностями того же радиуса, с центрами в вершинах правильного вписанного шестиугольника. Эта часть Цветка носит название - ”Семя Жизни
Слайд 9

“Цветок Жизни” является нечем иным, как vesica piscis.

Весь узор “Цветка Жизни” формируется единственной окружностью. Одна окружность - центральная, а затем шестью окружностями того же радиуса, с центрами в вершинах правильного вписанного шестиугольника. Эта часть Цветка носит название - ”Семя Жизни”. Другая структура, скрытая в ”Цветке Жизни”, называется ”Древом Жизни”, она не принадлежит никакой культуре, даже египтянам, которые вырезали ”Древо Жизни” на колоннах в Карнаке и Луксоре. Каббала также не была источником ”Древа Жизни”. Это - структура, являющаяся сокровенной частью природы.

”Платоновые тела” имеют одинаковый размер (куб имеет каждой своей гранью квадрат, и все его грани - одинакового размера), все рёбра имеют одинаковую длину (все рёбра куба – одной длины), все внутренние углы между гранями имеют одинаковую величину (в случае куба, этот угол равен 90 градусам), и четвё
Слайд 10

”Платоновые тела” имеют одинаковый размер (куб имеет каждой своей гранью квадрат, и все его грани - одинакового размера), все рёбра имеют одинаковую длину (все рёбра куба – одной длины), все внутренние углы между гранями имеют одинаковую величину (в случае куба, этот угол равен 90 градусам), и четвёртое, если Платоново тело поместить внутрь сферы (правильной формы), то все вершины его будут касаться поверхности сферы.

Симметрия. Аксиальная симметрия: А) — лист плюща; Б) — медуза Aurelia insulinda; В) цветок флокса. При повороте этих фигур вокруг оси симметрии равные части каждого из них совпадут друг с другом соответственно 1, 4, 5 раз (оси 1, 4, 5-го порядка). Лист плюща асимметричен.
Слайд 11

Симметрия

Аксиальная симметрия:

А) — лист плюща;

Б) — медуза Aurelia insulinda;

В) цветок флокса. При повороте этих фигур вокруг оси симметрии равные части каждого из них совпадут друг с другом соответственно 1, 4, 5 раз (оси 1, 4, 5-го порядка). Лист плюща асимметричен.

б — лист кислицы; симметрии соответственно 1․m, 3․m. Бабочке свойственна двусторонняя, или билатеральная, симметрия. Актиноморфная симметрия. а) — бабочка
Слайд 12

б — лист кислицы; симметрии соответственно 1․m, 3․m. Бабочке свойственна двусторонняя, или билатеральная, симметрия.

Актиноморфная симметрия

а) — бабочка

В)— додекаэдрическая Circorhegma dodecahedra, характеризующаяся симметрией правильных многогранников — додекаэдра и икосаэдра. Биообъекты с совершенной точечной симметрией. Радиолярии. А)- шарообразная Ethmosphaera polysyphonia, содержащая бесконечное число осей бесконечного порядка + бесконечное чи
Слайд 13

В)— додекаэдрическая Circorhegma dodecahedra, характеризующаяся симметрией правильных многогранников — додекаэдра и икосаэдра.

Биообъекты с совершенной точечной симметрией. Радиолярии

А)- шарообразная Ethmosphaera polysyphonia, содержащая бесконечное число осей бесконечного порядка + бесконечное число плоскостей симметрии + центр симметрии

Б) — кубические Hexastylus marginatus и Lithocubus geometricus, характеризующиеся симметрией кубав

РАДИАЛЬНАЯ СИММЕТРИЯ. Радиально-симметричные фигуры могут быть совмещены друг с другом путем вращения вокруг точки S. Эта точка называется центром симметрии. Фигуры, имеющие более двух осей симметрии. Равносторонний треугольник имеет три оси симметрии, а квадрат – четыре оси симметрии. У окружности
Слайд 14

РАДИАЛЬНАЯ СИММЕТРИЯ

Радиально-симметричные фигуры могут быть совмещены друг с другом путем вращения вокруг точки S. Эта точка называется центром симметрии.

Фигуры, имеющие более двух осей симметрии

Равносторонний треугольник имеет три оси симметрии, а квадрат – четыре оси симметрии. У окружности их бесконечно много – любая прямая проходит через её центр является осью симметрии.

Симметрия в химии
Слайд 15

Симметрия в химии

Симметрия (в химии) Симметрия в химии проявляется в геометрической конфигурации молекул, что сказывается на специфике физических и химических свойств молекул в изолированном состоянии, во внешнем поле и при взаимодействии с другими атомами и молекулами. Большинство простых молекул обладает элементам
Слайд 16

Симметрия (в химии) Симметрия в химии проявляется в геометрической конфигурации молекул, что сказывается на специфике физических и химических свойств молекул в изолированном состоянии, во внешнем поле и при взаимодействии с другими атомами и молекулами. Большинство простых молекул обладает элементами пространственной симметрии равновесной конфигурации: осями симметрии, плоскостями симметрии и т. д.

Симметрия вокруг нас
Слайд 17

Симметрия вокруг нас

Список похожих презентаций

"Симметрия в архитектуре Старого Оскола"

"Симметрия в архитектуре Старого Оскола"

Остановка 1. Главная улица города – улица Ленина. Мы находимся в центре нашего города у здания администрации. Какие приемы использовал архитектор, ...
В мире чисел

В мире чисел

Корни нумерологии. 1. Качества: благость, желательность, необходимость, неделимость. Связывалась с Аполлоном, Прометеем Символизирует начинание, источник, ...
В мире числовых суеверий

В мире числовых суеверий

Я выросла в потомственной семье математиков. Мои бабушка, Елисеева Ольга Алексеевна – заслуженный учитель РФ, и дедушка, Елисеев Николай Александрович, ...
В мире чисел. ВАЖНАЯ ЦИФРА.

В мире чисел. ВАЖНАЯ ЦИФРА.

Жили – были числа. Назови их…. А какие числа стояли не на своих местах? Числа очень любили складываться, потому что они сразу превращались в большее ...
В мире плоскостей

В мире плоскостей

1. Изображение. . . . Сколько тут элементов? «Невозможные объекты» и зрительные иллюзии. Бесконечная фотография. Невозможное окно. Сколько здесь колонн? ...
«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
В мире чисел

В мире чисел

Математика — это наука, имеющая дело с числами, количеством, формой. Без знания математики вся современная жизнь была бы невозможна. Например, у нас ...
В мире единиц длины

В мире единиц длины

Как люди измеряли длину раньше и как измеряют теперь? Историческая справка. С незапамятных времён человеку приходилось измерять расстояние в связи ...
«В мире животных. Занимательная математика»

«В мире животных. Занимательная математика»

Цели:. Знать: алгоритмы сравнения, сложения, вычитания десятичных дробей, названия геометрических фигур; правила правописания числительных. Уметь: ...
В мире квадратных уравнений

В мире квадратных уравнений

Оглавление. Введение Заметки прошлого Основные понятия Теорема Виета Способы решения квадратного уравнения. Математика — основа точных наук. На первый ...
Бумажные складные модели и их использование на уроках геометрии в 10 классе

Бумажные складные модели и их использование на уроках геометрии в 10 классе

Модель 1 – «Две пересекающиеся плоскости». Согнутый пополам лист бумаги служит моделью двух пересекающихся плоскостей. Линия сгиба – прямая их пересечения. ...
Больше в несколько раз, меньше в несколько раз

Больше в несколько раз, меньше в несколько раз

ЦЕЛЬ УРОКА. раскрытие смысла слов “больше (меньше) в несколько раз”. Расположите числа в порядке возрастания. 18, 9, 45, 27, 36, 72, 54, 63, 9, 18, ...
Биссектриса угла в треугольнике

Биссектриса угла в треугольнике

Задачи УЧЕБНИК А О В С D 80º ? 180º- 80º= 100º 100º Ответ:155º, 25º, 155º. Задача №535 биссектриса ? Определение. Биссектриса угла – это луч с началом ...
Биография М.В. Ломоносова в цифрах

Биография М.В. Ломоносова в цифрах

=2 =0,3 =3,6 =0,04 =1 =0,8 =0,42 =21,2 М И Ш А Н С К О Е. Ломоносов Родился в с. Мишанинском Архангельской губернии. 8 ноября 1711. Длина = 15,5 м ...
Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах. Цели урока:. Познакомиться с историей возникновения родного города Научиться определять временные промежутки и ...
Без математики, друзья, в жизни нам никак нельзя

Без математики, друзья, в жизни нам никак нельзя

Актуальность. Математика находится в тесной связи со всеми естественными, гуманитарными, точными науками и др., математические знания применяются ...
Арифметические операции в позиционных системах счисления

Арифметические операции в позиционных системах счисления

Ответьте на вопросы:. Какие системы называются НЕПОЗИЦИОННЫМИ? Какие системы называются ПОЗИЦИОННЫМИ? Какое число называют – ОСНОВАНИЕ позиционной ...
«Математика в профессиях»

«Математика в профессиях»

Ознакомление с типами профессий и характеристиками труда. Исследование значения математики в различных областях деятельности человека. Развитие познавательной ...
Арифметическая прогрессия в древности

Арифметическая прогрессия в древности

Египетские папирусы и вавилонские клинописные таблички, относящие ко II тыс. до н.э., содержат примеры задач на арифметическую прогрессию. Каких-либо ...
Арифметическая и геометрическая прогрессии в заданиях ГИА

Арифметическая и геометрическая прогрессии в заданиях ГИА

Цели урока: Обобщить и систематизировать знания учащихся по данной теме. Разобрать типичные задания встречающихся в сборниках для подготовки к ГИА. ...

Конспекты

Видеть и слышать, или как не потеряться в мире информации

Видеть и слышать, или как не потеряться в мире информации

Конспект – сценарий урока, разработанного учителями МОУ Брызгаловская СОШ Ивановой Е.Б. и Колпаковой Л.В. Тема: «Видеть и слышать, или как не потеряться ...
В мире формул

В мире формул

Тема: «В мире формул». . 7 класс. Цели урока:. . Обучающая:. обобщить изученный материал, проверить степень усвоения темы; продолжить преобразовывать ...
В мире многоугольников

В мире многоугольников

Технологическая карта урока. Учитель: Береговская Е.А. Предмет: математика. Класс: 5 –б. Автор УМК: Дорофеев Г.В., Шарыгин И.Ф., Суворова С.Б. ...
В мире симметрии

В мире симметрии

В мире симметрии. Цели:. Обучающая. Сформировать понятие симметрии, как геометрическое свойство фигур. Развивающая. . Продолжить формирование ...
В мире желтого цвета

В мире желтого цвета

Конспект урока для 1 класса на тему. «В мире желтого цвета». Программное содержание. Учить детей называть основные цвета спектра: желтый, ...
В мире Математики

В мире Математики

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ. . Дополнительного образования детей Центр детского Творчества. Разработка занятия ...
В мире волшебных чисел

В мире волшебных чисел

Конспект занятия по математике в старшей группе. . . Тема:. "В мире волшебных чисел". Выполнила воспитатель старшей группы:. Куликова ...
В мире десятичных дробей

В мире десятичных дробей

МКУ «Департамент образования Местной администрации г.о. Нальчик». Муниципальное казенное образовательное учреждение. дополнительного образования ...
Виды углов в планиметрии

Виды углов в планиметрии

Лабораторно-практические занятия по геометрии в 7 классе. Лабораторно-практические занятия имеют важное значение, особенно при обучении детей с ...
Введение в теорию вероятностей

Введение в теорию вероятностей

9 класс. Тема: Введение в теорию вероятностей.(90 мин.). Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 февраля 2019
Категория:Математика
Содержит:17 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации